
Rob Dimeo
NIST Center for Neutron Research

SIMPLE QUANTUM VISUALIZATIONS
USING IDL

NIST Special Publication 1098 2009

SIMPLE QUANTUM
VISUALIZATIONS USING IDL

Robert M. Dimeo

NIST Center for Neutron Research

National Institute of Standards and Technology

Gaithersburg, Maryland

September 3, 2009

Disclaimer
Opinions expressed herein are those of the author and should not be interpreted as opinions of
NIST or of the NIST Center for Neutron Research. NIST assumes no responsibility whatsoever
for use of this software or documentation, and makes no guarantees, expressed or implied, about
its quality, reliability, or any other characteristic. The use of certain trade names or commercial
products does not imply any endorsement of a particular product, nor does it imply that the named
product is necessarily the best product for the stated purpose.

Contents

Contents i

Preface iii

Acknowledgments v

1 Introduction 1

1.1 Topics Covered in the Book . 2

1.2 Selected Results from Quantum Mechanics . 3

1.3 IDL Utilities . 5

2 Stationary States 13

2.1 The Discrete Variable Approximation in One Dimension 13

2.2 The Discrete Variable Approximation in Two Dimensions 24

2.2.1 The Stadium Potential . 27

2.2.2 The Cardioid Potential . 29

3 Quantum Rotations 37

3.1 Hindered Methyl Rotations . 37

3.2 Determining the Hamiltonian Matrix . 38

3.2.1 Solving the Hamiltonian . 39

3.2.2 Transitions . 43

3.3 Hindered Dumbell Rotations . 47

4 Quantum Dynamics in One Dimension 53

4.1 The Goldberg-Schey-Schwartz Algorithm . 53

4.1.1 Development of the GSS Algorithm . 54

4.1.2 Implementation . 56

i

CONTENTS

4.1.3 Stability and Selection of Parameters . 57

4.1.4 Getting the Units Right with the GSS Algorithm 58

4.2 Scattering from a High Step Potential . 59

4.3 Scattering from a Square Barrier . 62

4.4 Scattering from a Square Well . 65

4.5 Scattering from a Periodic Potential: Bragg’s Law 70

4.6 Scattering from a Well with a Lip: Metastable/Virtual States 73

5 Quantum Dynamics in Two Dimensions 79

5.1 The Algorithm of Askar and Cakmak . 79

5.2 Two-Dimensional Scattering . 81

5.2.1 Self-Interference: Transmission through Double-Slits 83

5.2.2 Dynamics of Quantum Billiards . 85

5.2.3 Dynamics of a Wavepacket in Archimedes’ Spiral 88

5.3 Colliding Particles . 92

5.3.1 Colliding Billiard Balls . 95

5.3.2 Scattering from an Harmonic Oscillator . 96

6 Quantum Visualizations 103

A The Wigner 3-j Symbol 115

B The Simple Harmonic Oscillator Eigenfunctions 117

Answers to Selected Exercises 119

Index 122

ii

Preface

Man is most nearly himself when he achieves the seriousness of a child at play.

—Heraclitus

One of the biggest frustrations I had as a graduate student studying physics was my inability
to visualize one of the phenomena that I spent years studying. At the time in the mid 90’s, there
were only a handful of us investigating the collective excitations of superfluid helium in confined
geometries—and it’s probably a safe bet that none of us had any idea (beyond some very simple-
minded views) what it was we were seeing with the tools of neutron scattering. And if pressed, our
response might involve mumbling something about ”density fluctuations.” I recall spending a great
deal of time trying to understand what a collective excitation looked like. Though we all learned in
our undergraduate solid-state physics courses what a phonon looked like in terms of lots of sloshing
about of many masses connected with many springs, it was Feynman himself who provided the
first qualitative glimpse of what a collective excitation in superfluid helium looked like. Specifically
he described the helium excitation known as a roton as a really tiny smoke ring—a microscopic
quantized vortex ring. Though quantum vortices were eventually discovered in superfluid helium,
these were not the rotons. Nevertheless Feynman used his intuition and a very deep knowledge
of quantum mechanics to construct an early mental picture of a roton. And the point is that the
visualization process is individual and relies on the creativity of the individual.

It was not long after getting my Ph.D. that I began research on a class of systems that were
quite accessible to calculation and visualization. I built my early research program investigating
the quantum dynamics of small molecules in solids that can rotate about a single axis yet are
hindered from rotating freely. I learned that these hindered rotors could be modeled simply as
one-dimensional single particles and the dynamics could be obtained by solving the Schrödinger
equation for a very simple potential. With the frustration of my graduate school days still fresh,
I became intensely interested in trying to develop a mental picture—and a real picture—of the
quantum rotational dynamics for the systems that I was studying using neutron scattering. Thus
began my entry into computational methods and visualization.

I have been involved in software development at the NIST Center for Neutron Research
since 1999, working with staff to develop data reduction, visualization and analysis programs for
neutron scattering experiments. During this period I developed programs that have been used for
analyzing neutron scattering data both for my own basic research purposes and even for education
and outreach activities. The main programs presented in this book are based on programs that
were developed for one or both of those purposes.

I had a number of goals in writing this book. My main goal was to provide a useful resource
for staff at the NCNR (and elsewhere) in developing software for analyzing their neutron scattering

iii

data, or perhaps even developing end-user applications for the growing NCNR user program.
Oftentimes the analysis of neutron scattering data requires one to perform some form of quantum
mechanical calculation and then use the results to interpret the phenomena being investigated.
However as I proceeded to write down the main ideas it became clear that the material is more
general than just neutron scattering.

This book is not intended to be used as a textbook in IDL [1] programming or quantum
mechanics. Rather it can be used as a supplement to a quantum mechanics course or even as
a vehicle for a researcher to wade gently into IDL programming in a topic with which he/she is
already familiar before embarking on a specific research application involving computing. Nev-
ertheless some background in both areas is assumed. In particular this book is intended for use
by individuals who have had at least an upper-division quantum mechanics course [2, 3, 4] and
can program in IDL at the beginner-to-intermediate level.[6, 7]. There are numerous excellent
texts on quantum mechanics and many manuals are available for learning IDL. IDL programming
topics that readers are expected to have some working knowledge of include pointers, structures,
procedures, functions, and simple plots using IDL’s direct graphics system (i.e. it is assumed that
the reader has programmed using these constructs). No widget or object programming is required.

There are excellent texts that contain many visualizations.[3] This book is geared toward
the individual that wishes to create his/her own visualizations, explore the effects of different
potentials, experiment with different manners of viewing the data, and is not afraid to modify
existing code or write their own programs for their own purposes. This book is meant to be used
in a hands-on style—the reader is expected to run the code presented within as well as try the
exercises that are scattered throughout the chapters. These exercises are meant to extend the ideas
that have already been presented and entice the reader to apply the code to different situations. It
is hoped that the programs presented herein are a starting point for the reader to perform his/her
own calculations. All of the programs are available for download from the author’s website[8].

The topics covered in this book are intended as a starting point for the reader to extend
in his/her own investigations into quantum phenomena. More than anything else—and especially
in the spirit of Heraclitus’ sentiment—the material in this book is meant to arouse the reader’s
curiosity and creativity and allow him/her to take the next step by creating his/her own meaningful
computations and visualizations.

Rob Dimeo

iv

Acknowledgments

The software in this book is the result of time spent learning IDL programming from many out-
standing resources. The individuals who have helped me at one point or another include David
Fanning, Beau Legeer, Mark Piper, Mike Galloy, Ronn Kling, Craig Markwardt, John Copley,
Richard Azuah, Larry Kneller, Alan Munter, and Yiming Qiu. My understanding and intense
interest and enthusiasm for quantum mechanics is attributed to a number of Physics faculty as
well as current colleagues. These individuals include Rick Robinett, Murat Gunaydin, Roy Willis,
Paul Sokol, Dan Neumann, Craig Brown, Jack Rush, and the late Sam Trevino.

This work was done in support of the DAVE software development project at the NIST
Center for Neutron Research and it is based upon activities supported by the National Science
Foundation under Agreement No. DMR-0454672.

v

Chapter 1

Introduction

The more I think of the physical part of the Schrödinger theory, the more detestable I find it.

What Schrödinger writes about visualization makes scarcely any sense, in other words I think it is

shit. The greatest result of his theory is the calculation of matrix elements.

—Werner Heisenberg in a letter to Wolfgang Pauli (June 8, 1926)

Heisenberg’s skepticism of Schrödinger’s theory notwithstanding, I think it is safe to assume
that we’ve come a long way in over 80 years. While imagination and a very deep intuition of math-
ematics lay at the heart of early attempts to assign physical meaning to (i.e. visualize) quantum
mechanics, the latter half of the 20th century saw ever-increasing computing power brought to bear
on quantum phenomena. Arguably one of the most interesting applications of scientific computing
is visualizing phenomena that were once thought to be beyond the limits of human perception.
Such esoteric phenomena as quantum tunneling are now commonplace in industrially-relevant and
standard technologies. The development of today’s technologies required a deep understanding of
atomic-scale phenomena in order to design at these scales (i.e. nanotechnology). No doubt the
trend towards smaller scale designs will continue where quantum mechanics manifests itself and
therefore it is more important than ever that scientists and engineers cultivate a common sense and
intuition regarding quantum phenomena. Indeed modern texts on quantum mechanics emphasize
the role of visualization in developing such intuition.[2, 3]

Computer visualization methods have grown in popularity as a means to gain an intuition
about quantum phenomena. The substantial increase in computational power of desktop comput-
ers has enabled researchers to perform very sophisticated numerical computations in the comfort
of their own offices or homes. High-level programming languages that emphasize matrix manipula-
tions such as IDL and MATLAB have lowered the barrier to novice users (e.g. students) and permit
computation and visualization of phenomena that can be performed relatively quickly both from a
programming and software development perspective as well as in terms of processor time.[1, 5] The
first point is important, particularly for students. High-level programming languages now feature
fulsome command syntax that is very close to mathematical syntax, making it even easier for a
student to transition from the equations in a textbook to computation. The second point, that im-
provements in processors have reduced the time to perform many complex calculations, has made
investigations into complex scientific phenomena more realizable on conventional desktop comput-
ers. The combination of these two factors has resulted in making education and research involving
computation of modern quantum phenomena more accessible to a wider range of individuals. In

1

Introduction

this book we will show how one can use one of these high-level graphics and numerical manipu-
lation packages, IDL, to solve standard (and not-so-standard) problems from quantum mechanics
and visualize the results. Though the development of the algorithms is motivated strongly through
the use of quantum mechanical and mathematical arguments, use of the algorithms requires far
less sophistication. It is hoped that the simplicity of implementation will foster exploration.

1.1 Topics Covered in the Book

The topics from quantum mechanics covered in this book are organized to some extent in order
of increasing complexity. The material begins with a presentation of the discrete-variable ap-
proximation to solve the time-independent Schrödinger equation for a one-dimensional potential.
Dynamics are introduced early and motivated through the time-development of a state composed
of two eigenstates. The phenomenon of quantum tunneling is presented as an illustration of the
time-development of a quantum state initially localized in one side of a parabolic well separated
by a barrier. The discrete-variable method is extended to two dimensions and applied to a class
of closed potentials and the stationary-states are computed for systems known as quantum bil-

liards. The next chapter continues the discussion of solutions to the time-independent Schrödinger
equation but covers the phenomenon of quantum rotations. The new wrinkle in the discussion is
that the potentials are periodic. The single-particle motion of a three-fold rotor is discussed first
and serves as an excellent example of a one-dimensional system with periodic boundary condi-
tions. It illustrates the phenomena of quantum tunneling and quantum librations (i.e. torsional
oscillations) which are observed in real physical systems. The chapter concludes with a presen-
tation of quantum rotations of a dumbell rotor, both free and hindered. The results of those
computations are applicable to the dynamics of H2 adsorbed onto surfaces because the dumbell
rotor is an idealization of the H2 molecule. Next the method of Goldberg, Schey, and Schwartz
is described to solve the time-dependent Schrödinger equation in one dimension.[9] A remarkably
short function is presented that performs the computation of the time-evolution of the wavefunc-
tion subject to a user-defined potential. This enables one to construct striking animations of the
space-time and momentum-time perspectives of scattering phenomena. In chapter 5, a method
to solve the time-dependent Schrödinger equation in two dimensions is presented and applied to
two situations. First, we examine a single particle in two dimensions (represented by a Gaussian
wavepacket) evolving under the influence of a two-dimensional potential. Remarkable phenomena
become visually accessible with this capability such as a single particle passing through two slits,
hence interfering with itself. The second application of this two-dimensional algorithm is to com-
pute the consequences of two one-dimensional particles (Gaussian wavepackets) interacting with
each other. Specific examples include observing the effects of a Gaussian wavepacket scattering
from a harmonically bound oscillator through a repulsive interaction potential. In the final chapter
we present a series of color images of quantum scattering phenomena, many of which are alternative
representations of examples presented in previous chapters.

Throughout the chapters a number of exercises are presented. These exercises are meant to
give the reader an opportunity to practice the techniques presented. Often this will involve slight
modification to code presented in that section but some exercises require more significant work.
There are also exercises requiring an advanced level of mathematical and/or physical sophistication.
Depending on the amount of work or difficulty involved in completing the exercise, the degree of
challenge involved is represented by use of asterisks on the exercise label. Simple exercises are
labeled with no asterisks and the most difficult exercises are labeled with three asterisks. Answers
to selected exercises are provided after the appendices near the end of the book.

2

1.2 Selected Results from Quantum Mechanics

1.2 Selected Results from Quantum Mechanics

This section is not a primer on quantum mechanics nor is it a complete summary of all of the results
from quantum mechanics. Rather we present a few of the main equations and quantities that will
be used in this book. The reader is assumed to have a working knowledge of the equations in this
section. See, for instance, the excellent description of this material in the text by Robinett.[2]

The equation of motion for matter on the atomic scale, specifically for a material particle of
mass m, is the time-dependent Schrödinger equation which is given (in Dirac’s bra-ket notation)
by

H ∣ ⟩ = iℏ
∂

∂t
∣ ⟩, (1.1)

where ∣ ⟩ is the probability amplitude that describes the quantum mechanical motion of the system.
In position space, the Hamiltonian operator H is given by

H = − ℏ
2

2m

∂2

∂x2
+ V (x) , (1.2)

where m is the mass and the Hamiltonian operator acts on the complex probability amplitude
⟨x∣ ⟩, also written as (x, t). For the remainder of this book we will consider time-independent
potentials only V (x, t) = V (x). Moreover we will use (x, t) and ⟨x∣ ⟩ interchangeably.

Though we cannot measure the probability amplitude directly, it is related to the probability
density

P (x, t) =
∣

∣⟨x∣ ⟩ (t)
∣

∣

2
, (1.3)

where the quantity P (x, t) dx is the probability of finding the particle at time t within a range dx
of position x.

For a time-independent potential, there are special solutions, the stationary states, of the
Schrödinger equation that satisfy an eigenvalue equation

H ∣n⟩ = En∣n⟩, (1.4)

where ∣n⟩ is the eigenfunction corresponding to the nth eigenvalue En and H is given by equation
1.2 in one spatial dimension. That the eigenstates are stationary means that if the state of the
quantum system is prepared in one of these eigenstates, it will stay there forever unless perturbed.
If a state is composed of a number of eigenstates then the state is time-dependent due to transitions
among the eigenstates present in the initial state. As an example, consider a state composed of an
equal mixture of the two lowest energy eigenstates

⟨x∣ ⟩ (0) = 1√
2
(⟨x∣0⟩+ ⟨x∣1⟩) . (1.5)

Applying the time-development operator on this state, U (t, 0) = exp (−iHt/ℏ), yields a state that
evolves with the following time dependence

⟨x∣ ⟩ (t) = 1√
2

(

e−iE0t/ℏ⟨x∣0⟩+ e−iE1t/ℏ⟨x∣1⟩
)

. (1.6)

In chapter 4 we will be investigating extensively wavepackets that scatter from various
potentials. In our visualizations of the scattering process it will be useful to represent the energy
of the wavepacket in some manner that allows us to compare it to the potential from which it

3

Introduction

scatters. We will find it useful therefore to calculate the kinetic energy of the wavepacket and
offset the wavepacket by that amount. The kinetic energy is found by calculating the integral

⟨T ⟩ = ℏ
2

2m

∫ ∞

−∞
dx

∣

∣

∣

∣

∂⟨x∣ ⟩
∂x

∣

∣

∣

∣

2

. (1.7)

It is possible to view the quantum state of a system in a representation other than the
position-space representation. Often it can be more convenient to obtain detailed information on
the momentum content of a wavefunction by examining the momentum space wavefunction. In
fact there are occasions when the interpretation of certain physical phenomena is simplified when
examined in the momentum domain. The momentum-space wavefunction is obtained through
Fourier transformation of the position-space wavefunction

⟨p∣�⟩ = 1√
2�ℏ

∫ ∞

−∞
dx e−ipx/ℏ⟨x∣ ⟩ (t) . (1.8)

Note that �(p, t) and ⟨p∣�⟩ are used interchangeably. The momentum space probability amplitude
⟨p∣�⟩ is related to the probability density for momentum

P (p, t) =
∣

∣⟨p∣�⟩ (t)
∣

∣

2
(1.9)

where P (p, t) dp is the probability that we will find the particle at time t with momentum within
a range dp of p. Note that we will often use ⟨k∣�⟩ and ⟨p∣�⟩ interchangeably since we know from
the de Broglie relations that p = ℏk where the wavevector k ≡ 2�/�.

In two dimensions the Schrödinger equation in cartesian coordinates is given by

H = − ℏ
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ V (x, y) (1.10)

which acts on the wavefunction ⟨x, y∣ ⟩. Note that this is also related closely to the Hamiltonian
for two interacting particles in one dimension. If we label the position coordinate for particle 1 by
x1 and that of particle 2 by x2 and define the interaction between the two particles as V (x1, x2)
then the two-particle Hamitonian is given by

H = −ℏ
2

(

1

2m1

∂2

∂x21
+

1

2m2

∂2

∂x22

)

+ V (x1, x2) . (1.11)

Similarly this Hamiltonian acts on the two-particle wavefunction ⟨x1, x2∣ ⟩. Strictly speaking,
the two-particle wavefunction ”entangles” the two particles in such a way that does not permit
one in general to disentangle the behavior of a single particle upon solving for the two-particle
wavefunction. If there were no correlation between the two particles—which is not the case for
interactions between two particles—then the two-particle wavefunction could be factored due to
their independence (note that this would be the case if the potential could be separated into two
terms, i.e. V (x1, x2) = V1(x1)+V2(x2)). This is not the case in general. Nevertheless we can project
out the single-particle densities �1 (x1) and �2 (x2) in an effort to view the single-particle motion.
This approach is exact for separable potentials. However it is also a reasonable approximation for
times long before and long after an interaction. The expressions for the single-particle densities
are

�1 (x1) =

∫ ∞

−∞
dx2
∣

∣⟨x1, x2∣ ⟩
∣

∣

2
(1.12)

and

�2 (x2) =

∫ ∞

−∞
dx1
∣

∣⟨x1, x2∣ ⟩
∣

∣

2
. (1.13)

4

1.3 IDL Utilities

1.3 IDL Utilities

[This section should be considered optional and can be skipped, especially on reading through for
the first time.]

Throughout this book we will require a number of IDL routines (functions and procedures)
to perform basic tasks. There are some 3rd party IDL routines that are used in the programs in
this book and readers should download these from the corresponding websites. PLOTIMAGE from
Craig Markwardt’s IDL library is among those.[10] Also some general-purpose utilities available
from David Fanning’s Coyote Library, an excellent web-based resource[7], are used. His image
display function TVIMAGE is used in many plots presented here, his color function FSC_COLOR is
used in some places (also requiring his programs PICKCOLORNAME and ERROR_MESSAGE), as is INSIDE
which determines if a point is located within a polygon. This will be particularly useful in the
implementation of two dimensional potentials. These routines are not discussed in any detail
in this book or in the program listings. Those details can be obtained from the websites listed
above. There are a number of utilities that will be used extensively in programs presented in
subsequent chapters of this book and these are listed in this section. Where appropriate, details
of the implementation are presented.

In this section we will present a number of functions and procedures that were written
especially for the purpose of visualizing data for this book. These will simply be presented without
much explanation except in a few cases. It is assumed (1) that the reader knows enough IDL to
be able to understand these routines, and (2) the reader has put these routines (and all programs
used in this book) in his/her IDL path so that the programs are able to compile the routines at
runtime.

The first utility is LINSPACE. This function creates an equally-spaced vector of Nx points
between xlo and xhi. The function listing is shown below.

function linspace,xlo,xhi,nx

compile_opt idl2,hidden

dx = (xhi-xlo)/(nx-1.0)

return,xlo+dx*findgen(nx)

end

Another function that we will find useful, particularly when calculating matrix elements of
a Hamiltonian, is the Kronecker delta function. This function is defined as follows:

�i,j =

{

0 for i ∕= j
1 for i = j.

(1.14)

Implementation of vector and matrix calculations in IDL is relatively straightforward. In
fact, it is one of the advantages of using a language such as IDL—matrix and vector calculations
can be written in a compact form. For example, the Kronecker delta function defined in (1.14)
can be written in essentially one line: i eq j where i and j are vectors or matrices. Let’s consider
first a vector of indices of length 4, ivec=indgen(4). Converting (or inflating) to a form of a 4× 4
matrix is done easily using the REBIN function: i=REBIN(ivec,4,4,/sample) which results in the

5

Introduction

matrix

i =

⎛

⎜

⎜

⎝

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

⎞

⎟

⎟

⎠

. (1.15)

Next let j=TRANSPOSE(i) such that,

j =

⎛

⎜

⎜

⎝

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

⎞

⎟

⎟

⎠

. (1.16)

By inspection we can see that the diagonal elements of these two matrices are equal so that

�i,j =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

. (1.17)

Our IDL implementation of the Kronecker delta function is listed below:

function ds_delta,i,j

compile_opt idl2,hidden

return,i eq j

end

We can execute the following commands to illustrate how this Kronecker delta function works.

IDL> ivec = indgen(4)

IDL> i = rebin(ivec,4,4,/sample)

IDL> j = transpose(i)

IDL> print,ds_delta(i,j)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

A visualization utility that displays an animated sequence based on a user-specified transition
between eigenstates is given in the IDL function named ANIMATE_TRANSITION_PROB. The input
parameters are the position vector x, the potential vector v defined at x, the complex wavefunctions
wf (a two dimensional complex array in which the first dimension is the spatial dimension and the
second dimension specifies which eigenvalue in ascending order), the eigenvalue array eigvals

given in ascending order, and the identification of the two eigenstates n and m. Note that in this
nomenclature the wavefunction wf[*,5] corresponds to the sixth eigenvalue or eigvals[5].

function animate_transition_prob,x,v,wf,eigvals,n,m

6

1.3 IDL Utilities

compile_opt idl2,hidden

; Displays the animation of the probability density

; corresponding to an initial wavefunction composed

; of two eigenstates <x|n> and <x|m> of the potential

; v.

e0 = eigvals[n] & e1 = eigvals[m]

w0 = e0/0.6528 & w1 = e1/0.6528

wf0 = wf[*,n] & wf1 = wf[*,m]

period = 2.*!pi/abs(w0 - w1)

; Set up the time discretization

nt = 300 & dt = period/(nt-1.0)

t = dt*findgen(nt) ; time in pico-seconds

; Construct the time-dependent probability density

i = complex(0.0,1.0)

psi = (1./sqrt(2.0))*(wf0#(exp(-i*w0*t))+wf1#(exp(-i*w1*t)))

prob = abs(psi)ˆ2

; Plot the animated sequence using a pixmap window

; so that the animation appears smooth.

angstrom = ’!6!sA!r!u!9 %!6!n’

xtitle = ’!6x (’+angstrom+’)’

title = ’!6P(x,t)’

winvis = 0

xsize = 500 & ysize = 400

window,0,xsize = xsize,ysize = ysize

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

sf = max(v)/max(prob)

for j = 0,nt-1 do begin

wset,winpix

plot,x,v,thick = 2.0,color = fsc_color(’black’), $

background = fsc_color(’white’), $

xtitle = xtitle,ytitle = ’!6V (meV)’,title = title, $

yrange = [5.0,25.0],/ystyle,/nodata

oplot,x,v,color = fsc_color(’blue’),thick = 4.0

oplot,x,e0+0.1*sf*prob[*,j],color = fsc_color(’red’),thick = 2.0

plots,!x.crange,[e0,e0],/data,linestyle = 2,$

color = fsc_color(’black’)

wset,winvis

device,copy = [0,0,xsize,ysize,0,0,winpix]

endfor

wdelete,winpix

return,1B

end

Once we calculate the position space wavefunction ⟨x∣ ⟩ (t) using one of our algorithms,
it is also instructive to look at the momentum space wavefunction ⟨k∣�⟩ (t) = �(k, t) or the
momentum space probability density ∣�(k, t)∣2. It is straightforward to compute the momen-
tum space wavefunction in IDL using the Fast-Fourier Transform (FFT). The function named

7

Introduction

MOMENTUM_TRANSFORM performs this calculation for you, given the position coordinates, time vec-
tor, and position-space wavefunction defined for all x and t. This function returns a structure
variable str whose fields are the str.phi_k and str.k. Note that the wavefunction in k-space
�(k, t) that is returned is properly normalized, (i.e.

∫∞
−∞ ∣�(k, t)∣2 = 1).

function momentum_transform,x,t,wf

compile_opt idl2,hidden

; This function uses the FFT to compute the

; k-space wavefunction based on the position-

; space wavefunction. The function returns a

; structure variable with a wavefunction field

; and a k field.

nx = n_elements(x) & nt = n_elements(t)

wfsize = size(wf)

dx = x[1] - x[0] & n21 = nx/2 + 1

k = indgen(nx)

k[n21] = n21-nx+findgen(n21-2)

k = 2.*!pi*k/(nx*dx) & k = shift(k,-n21)

if wfsize[0] eq 1 then begin

; Normalize the wavefunction

c = int_tabulated(x,abs(wf)ˆ2) & wf = wf/sqrt(c)

phi_k = nx*fft(wf,-1)

phi_k = shift(phi_k,-n21)

ck = int_tabulated(k,abs(phi_k)ˆ2)

phi_k = phi_k/sqrt(ck)

endif else begin

phi_k = complexarr(nx,nt)

for j = 0,nt-1 do begin

c = int_tabulated(x,abs(wf[*,j])ˆ2)

wf[*,j] = wf[*,j]/sqrt(c)

phi_k[*,j] = nx*fft(wf[*,j],-1)

ck = int_tabulated(k,abs(phi_k[*,j])ˆ2)

phi_k[*,j] = phi_k[*,j]/sqrt(ck)

endfor

phi_k = shift(phi_k,-n21,0)

endelse

str = {phi_k:phi_k,k:k}

return,str

end

In future chapters we will be calculating the time evolution of a probability density corre-
sponding to a complex wavefunction. A function called ANIMATE_PROBABILITY has been written
and is listed below. This is a simple utility whose input are the vectors x, t, and v, and the complex
array psi.

function animate_probability,x,t,v,psi,offset = offset

8

1.3 IDL Utilities

compile_opt idl2,hidden

if n_params() ne 4 then return,0B

if n_elements(offset) eq 0 then offset = 0.0

nt = n_elements(t) & device,decomposed = 0

winvis = 0 & xsize = 500 & ysize = 400

window,winvis,xsize = xsize,ysize = ysize

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

vhi = max(v,min = vlo)

vmax = max([abs(vhi),abs(vlo)])

prob = abs(psi)ˆ2 & sf = vmax/max(prob)

vlo = min(v,max = vhi) & dv = vhi-vlo

yr = [-vmax-0.2*dv,vmax+0.25*dv+offset] & xr = [min(x),max(x)]

xtitle = ’!6X’ & title = ’!3|!6<X!3|!7W!6>(T)!3|!e2!n!6’

ytitle = ’!7H’

for j = 0,nt-1 do begin

wset,winpix

plot,x,v,xrange = xr,yrange = yr,/xsty,/ysty,color = fsc_color(’black’),$

background = fsc_color(’white’),xtitle = xtitle,title = title,$

ytitle = ytitle,charsize = 1.5

oplot,x,offset+sf*prob[*,j],thick = 2.0,color = fsc_color(’red’)

wset,winvis

device,copy = [0,0,xsize,ysize,0,0,winpix]

endfor

wdelete,winpix

return,1B

end

Note that there is an input keyword named OFFSET. When this is set to a value, the prob-
ability density will be offset from the x-axis by that amount. Often we would like for that offset
value to be the kinetic energy of the wavepacket so that we can see how the wavepacket’s energy
compares with the potential from which it is scattering. A function called TDSE_CALC_ENERGY has
been written that performs this calculation based on the discretized wavefunction. The equation
used to calculate the kinetic energy from the wavefunction is

⟨T ⟩ = ℏ
2

2m

∫ ∞

−∞
dx

∣

∣

∣

∣

∂

∂x

∣

∣

∣

∣

2

. (1.18)

function tdse_calc_energy,x,wf

compile_opt idl2,hidden

nx = n_elements(x) & dx = x[1] - x[0]

; Normalize the wavefunction

c = int_tabulated(x,abs(wf)ˆ2) & wf = wf/sqrt(c)

wf_re = real_part(wf) & wf_im = imaginary(wf)

dwredx = 0.5*(wf_re[2:nx-1]-wf_re[0:nx-3])/dx

dwimdx = 0.5*(wf_im[2:nx-1]-wf_im[0:nx-3])/dx

energy = total(abs(dwredx)ˆ2+abs(dwimdx)ˆ2)*dx

9

Introduction

return,energy

end

Likewise, a function called ANIMATE_WAVEFUNCTION has been written to display the real and
imaginary components of the complex wavefunction.

function animate_wavefunction,x,t,v,psi,offset = offset

compile_opt idl2,hidden

if n_params() ne 4 then return,0B

if n_elements(offset) eq 0 then offset = 0.0

nt = n_elements(t)

winvis = 0 & xsize = 500 & ysize = 400

window,winvis,xsize = xsize,ysize = ysize

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

sf = max(v)/max(abs(psi))

psi_re = real_part(psi) & psi_im = imaginary(psi)

psi_env = abs(psi)

vlo = min(v,max = vhi) & dv = vhi-vlo

yr = [-max(v),vhi+0.25*dv+offset] & xr = [min(x),max(x)]

device,decomposed = 0

xtitle = ’!6X’ & title = ’!6<X!3|!7W!6>(T)’

ytitle = ’!7H’

for j = 0,nt-1 do begin

wset,winpix

plot,x,v,xrange = xr,yrange = yr,/xsty,/ysty,color = fsc_color(’black’),$

background = fsc_color(’white’),xtitle = xtitle,title = title,$

ytitle = ytitle,charsize = 1.5

oplot,x,offset+sf*psi_re[*,j],thick = 2.0,color = fsc_color(’red’)

oplot,x,offset+sf*psi_im[*,j],thick = 2.0,linestyle = 2,color = fsc_color(’red’)

oplot,x,offset+sf*psi_env[*,j],thick = 2.0,color = fsc_color(’red’)

oplot,x,offset-sf*psi_env[*,j],thick = 2.0,color = fsc_color(’red’)

wset,winvis

device,copy = [0,0,xsize,ysize,0,0,winpix]

endfor

wdelete,winpix

return,1B

end

The final utility that displays an animation of the time-evolution of a complex wavefunc-
tion is ANIMATE_PHASORS. This function displays a phasor representation of the complex valued
wavefunction as a function of position. The phasor concept is commonly applied in the analysis of
electrical circuits containing capacitive and inductive elements. Additionally they have been used
to graphically construct the resulting interference pattern from light waves that pass through slit
systems.

10

1.3 IDL Utilities

The concept is simple. Wave phenomena can be represented in the complex plane as an
arrow whose length is equal to the magnitude of the wave at that point in space and at that time.
The orientation of the arrow depends on the real and imaginary components at that point in space
and at that time.

Consider the complex wavefunction,

 (x, t) = re(x, t) + i im(x, t) (1.19)

where re and im are both real functions. Also note that

∣ (x, t)∣2 = 2
re(x, t) + 2

im(x, t) (1.20)

= 2
mag(x, t). (1.21)

We can rewrite the wavefunction as

 (x, t) = mag(x, t)e
i�(x,t) (1.22)

where the phase �(x, t) is given by

�(x, t) = tan−1

(

 im(x, t)

 re(x, t)

)

. (1.23)

The graphical picture of this representation, equation 1.22, is that of an arrow whose tail is at the
origin, whose head is pointing in a direction specified by �(x, t) measured counter-clockwise from
the positive x-axis, and rotating because it is a time-dependent quantity.

function animate_phasors,x,t,v,psi,wait = wait,offset = offset

compile_opt idl2,hidden

if n_params() ne 4 then return,0B

if n_elements(wait) eq 0 then wait = 0.0

if n_elements(offset) eq 0 then offset = 0.0

nt = n_elements(t) & nx = n_elements(x)

winvis = 0 & xsize = 500 & ysize = 400

window,winvis,xsize = xsize,ysize = ysize

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

sf = max(v)/max(abs(psi))

psi_re = real_part(psi) & psi_im = imaginary(psi)

psi_env = abs(psi)

psi_max = max(psi)

vlo = min(v,max = vhi) & dv = vhi-vlo

yr = [-max(v),vhi+0.25*dv+offset] & xr = [min(x),max(x)]

device,decomposed = 0

xtitle = ’!6X’ & title = ’!6<X!3|!7W!6>(T)’

ytitle = ’!7H’

for j = 0,nt-1 do begin

wset,winpix

pmag = abs(psi[*,j])/psi_max

xlimin = where((pmag ge 0.005),count); and (x ge xr[0]) and (x le xr[1]),count)

if xlimin[0] eq -1 then return,0B

11

Introduction

in = xlimin[where(˜xlimin mod 3)]

plot,x,v,xrange = xr,yrange = yr,/xsty,/ysty,color = fsc_color(’black’),$

background = fsc_color(’white’),xtitle = xtitle,title = title,$

ytitle = ytitle,charsize = 1.5

arrow,x[in],offset+replicate(0.0,nx), $

x[in]+1.0*sf*psi_re[in,j],$

offset+1.0*sf*psi_im[in,j],$

color = fsc_color(’black’),thick = 1.0,/data,solid = 0B

wset,winvis

device,copy = [0,0,xsize,ysize,0,0,winpix]

wait,wait

endfor

wdelete,winpix

return,1B

end

12

Chapter 2

Stationary States

A hallmark of a particle confined within some geometry is the existence of discrete–or quantized–
energy levels. There are a number of simple systems that exhibit quantized energy levels whose
solutions can be obtained analytically. These include the infinite square well, the finite square
well, the linear well, and the parabolic potential (a.k.a. the simple harmonic oscillator). These
idealized systems are usually treated in elementary quantum mechanics courses, and although
they are idealized, they have been realized in practical physical systems. For example see [11] for
a discussion of the applicability of a simple potential that can be used to model the energy levels
of charge carriers confined by quantum dot structures. Nevertheless, for all but the simplest of
systems and potentials, it is necessary to use some type of numerical algorithm to determine the
energy levels and corresponding wavefunctions (eigenvalues and eigenfunctions).

One of the simplest methods to obtain eigenvalues and the stationary state wavefunctions
of the Schrödinger equation for a static potential is the discrete variable approximation (DVA), a
method that appeared early in the literature.[12] In this chapter we will describe the mathematics
that underlies this method and provide the details on how this algorithm is implemented in a short
IDL program in the case of one and two spatial dimensions.

2.1 The Discrete Variable Approximation in One Dimension

The equation that governs a system with mass m and under the influence of a static potential
is the time-independent Schrödinger equation. In one spatial dimension the time-independent
Schrödinger equation is written

(

− ℏ
2

2m

d2

dx2
+ V (x)

)

⟨x∣n⟩ = En⟨x∣n⟩. (2.1)

This differential equation is an eigenvalue equation and can be represented more closely to the
matrix form of an eigenvalue equation in the following representation:

H ∣n⟩ = En∣n⟩ (2.2)

where H is the Hamiltonian that represents the operation on ⟨x∣n⟩ on the left-hand side of (2.1),
and En is the eigenvalue corresponding to the eigenvector ∣n⟩.

13

Stationary States

As a first approximation, we can discretize the spatial dimension such that we represent the
coordinate as xi = iΔx+min(x) for i = 0, 1, 2, ..., Nx−1 where Δx = (max(x)−min(x)) / (Nx − 1),
the potential as Vi ≡ V (xi), and the wavefunction as i ≡ (xi) = ⟨xi∣ ⟩. A half-step central
difference approximation for the first derivative yields the following expression:

d

dx
≃ (x+Δx/2)− (x−Δx/2)

Δx
(2.3)

Extending this central difference approximation to the second derivative yields

d2

dx2
≃ (x+Δx)− 2 (x) + (x−Δx)

Δ2
x

. (2.4)

In the discretization described above this expression becomes

d2

dx2
≃ (1/Δx)

2
(i+1 − 2 i + i−1) . (2.5)

Now we can rewrite the discretized version of the Schrödinger equation (2.1) as follows

− ℏ
2

2m

(

1

Δx

)2

(i+1 − 2 i + i−1) + Vi i = E i. (2.6)

We can make the substitution � = ℏ
2

2mΔ2
x

and (2.6) becomes

−� (i+1 − 2 i + i−1) + Vi i = E i. (2.7)

We note here that � has the same dimensions as V and E, that is, energy. For our computations
we will choose units of meV. Specifically, we use ℏc = 1973 × 103 meV ⋅ Å. We will also specify
the mass of the particle governed by the Schrödinger equation in atomic mass units, u. In our
expression for � then, mc2 = 931.5× 109 u meV.

There is one more step necessary in order to cast this equation into the form of a matrix
eigenvalue equation (i.e. Hi,j j = Ej j). We must transform this discrete equation such that the
wavefunction evaluated at a single point, i = (xi), is found in that equation. We can do this
via the use of Kronecker delta function, �ij described in the previous chapter.

Noting that i�i,j = j�i,j we can rewrite (2.7) as the following matrix equation:

−� (�i,j+1 i − 2�i,j i + �i,j−1 i) + Vi�i,j i = E i�i,j . (2.8)

Finally we can cast this into its final form of an eigenvalue equation Hij j = Ej j as follows:

[(2� + Vj) �i,j − � (�i,j+1 + �i,j−1)] j = Ej j . (2.9)

The final result for the matrix elements of the Hamiltonian is:

Hi,j = (2� + Vj) �i,j − � (�i,j+1 + �i,j−1) . (2.10)

An alternative way to think about the discrete variable approximation is to consider the
discrete points xj (at which we seek the amplitudes j) as being an orthonormal basis. In this

14

2.1 The Discrete Variable Approximation in One Dimension

perspective, we are working in an Nx-dimensional vector space where the unit vectors, ∣xj⟩ are
column vectors that can be written as

∣x0⟩ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
0
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, ∣x1⟩ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
1
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, ⋅ ⋅ ⋅ , ∣xk⟩ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
...
1
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.11)

where the 1 appears in the kth position in the ∣xk⟩ unit vector. These vectors satisfy the required
property of orthonormality, ⟨xi∣xj⟩ = �ij . An expansion in this basis set of orthonormal unit
vectors is an approximation to the wavefunction

∣ ⟩ =
Nx−1
∑

j=0

∣xj⟩⟨xj ∣ ⟩, (2.12)

where (x) ≃ (xj) ≡ ⟨xj ∣ ⟩.
The IDL code that performs the numerical work in the equations above (i.e. constructing

the Hamiltonian, equation 2.10, and then performing the diagonalization) is presented below.

function dva_solver,x,v,mass = mass

compile_opt idl2,hidden

if n_elements(mass) eq 0 then mass = 1.0

dx = x[1] - x[0] & nx = n_elements(x)

hbarc = 1973d3 & mc2 = mass*931.5d9

b = (hbarcˆ2)/(2.*mc2*dxˆ2)

i = rebin(indgen(nx),nx,nx,/sample)

j = transpose(i)

vj = rebin(v,nx,nx,/sample)

h = (2.*b+vj)*ds_delta(i,j)-$

b*(ds_delta(i,j+1)+ds_delta(i,j-1))

evals = real_part(la_eigenql(h,/double,eigenvectors = evec))

esort = sort(evals) & evals = evals[esort]

psi = evec[*,esort]

str = {psi:psi,evals:evals}

return,str

end

This function has two required input parameters. A vector of equally-spaced x-values must
be passed into the function via the parameter x. Note that the unit for the spatial coordinates is Å.
The potential, defined at those x locations, must be passed into the function via the parameter v.
Finally the user can specify the mass of the particle with the optional mass keyword. As described
above, the mass is defined in terms of atomic mass units. If the user does not specify the particle’s
mass then the default value 1 is used. This function returns a structure variable with two fields:
the wavefunction named psi and the energy eigenvalues evals. The dimension of the psi field is
Nx ×NE where Nx is the number of x-values in the spatial discretization and NE is the number

15

Stationary States

of energy eigenvalues. Of course the nature of this particular algorithm forces NE = Nx but we
simply point out the previous point so that the user knows which index specifies space and which
specifies the eigenstate. The wavefunctions are sorted in order of ascending energy eigenvalue so
that, if we invoked our new IDL function sol=DVA_SOLVER(x,v), the ground-state ⟨x∣0⟩ and first
excited state ⟨x∣1⟩ wavefunctions are obtained in IDL via sol.psi[*,0] and sol.psi[*,1]. The
corresponding energy eigenvalues are sol.evals[0] and sol.evals[1] respectively.

Since this is a numerical procedure, the natural question to ask is how good is it as an
estimator of the eigenvalues and eigenvectors. Let’s consider eigenvalues here for the purpose
of illustrating its utility. In short, though, the algorithm works pretty well for the lowest-lying
eigenstates but gets poorer for higher energy states. For example, for V (x) = 1

2x
2, and −10 ≤ x ≤

10, the errors1 in the lowest 5 eigenvalues calculated using DVA_SOLVER are shown in table 2.1.

Table 2.1: Comparison of errors in the lowest 5 eigenvalues for different grid sizes

n Nx = 50 (%) Nx = 100 (%) Nx = 200 (%)

0 0.51 0.13 0.03
1 0.86 0.21 0.05
2 1.3 0.33 0.08
3 1.9 0.45 0.11
4 2.4 0.57 0.14

The take-home message of this demonstration is that the results vary with how fine you
discretize the spatial variable. If you are interested in obtaining results with a particular accuracy,
you should vary Nx and see how the results change before settling on a value for Nx. This is
an effective qualitative algorithm but the user should exercise caution when attempting to obtain
accurate numerical values.

The reader may no doubt suspect that there exist more accurate algorithms for computing
the stationary states of a one-dimensional system. In fact there are and we will describe one such
method that is more accurate but requires an analytical calculation of the matrix elements for the
potential. In the Expansion Method (EM) in one-dimension we consider a potential that is bounded
by an infinite square well on both sides. V (x) is finite on 0 < x < L but it is infinite outside that
region. With this boundary condition, the position-space eigenstates vanish outside of this region.
The basis set which we use to calculate the eigenstates of a particle under the influence of V (x) is
that of the infinite square well, given by

⟨x∣n⟩ =
√

2

L
sin
(n�x

L

)

, n = 1, 2, 3, ⋅ ⋅ ⋅

and the energy eigenvalues are given by

En =
n2�2

ℏ
2

2mL2
.

Using this basis set we evaluate the matrix elements of the Hamiltonian Hm,n = Tm,n+Vm,n where

Hm,n = ⟨m∣H ∣n⟩
= ⟨m∣T ∣n⟩+ ⟨m∣V ∣n⟩,

1The error is defined as 100×
∣Eexact−Ecalc∣

Eexact
where E denotes an eigenvalue.

16

2.1 The Discrete Variable Approximation in One Dimension

the kinetic energy operator is given by

T = − ℏ
2

2m

d2

dx2
,

and V = V (x). Problem-specific knowledge is required to calculate the potential matrix element.

Let’s consider a concrete example whose solution we know analytically: the harmonic oscil-
lator V (x) = k(x− L/2)2/2. We must calculate

Vm,n =

∫ L

0

dx ⟨m∣x⟩1
2

(

x− L

2

)2

⟨x∣n⟩

=
2

L

∫ L

0

dx
1

2
k

(

x− L

2

)2

sin
(n�x

L

)

sin
(m�x

L

)

=
k

L

∫ L

0

dx

(

x− L

2

)2

sin
(n�x

L

)

sin
(m�x

L

)

.

This integral can be evaluated analytically and the final result is for n = m

Vn,n =
1

2
kL2

(

1

12
− 1

2n2�2

)

, (2.13)

and for n ∕= m

Vm,n =
1

2

kL2

�2

[

(−1)n−m + 1

(n−m)
2 − (−1)n+m + 1

(n+m)
2

]

(2.14)

Now we can calculate the eigenvalues for the lowest eigenstates for k = 1, 0 ≤ x ≤ 20 and
compare to the values calculated using the DVA (for the same size Hamiltonian) and the exact
known values.

Table 2.2: Accuracy of eigenvalues for the SHO calculated with the DVA and the EM for a 50×50
Hamiltonian.

n DVA (%) EM (%)

0 0.51 4× 10−4

1 0.86 1× 10−3

2 1.3 1× 9−6

3 1.9 3× 10−4

4 2.4 2× 10−5

The results are shown in table 2.2. It is clear that the EM yields superior results for the same
size Hamiltonian. However problem-specific knowledge is required to use the algorithm and it is
necessary to calculate the matrix elements, usually by calculating (oftentimes) tedious integrals, a
priori. This algorithm has been extended to two dimensions and used to calculate the eigenvalues
and eigenfunctions for quantum billiard systems, discussed briefly in the next section.[13] The
accuracy is superior to that of the DVA. Nevertheless the DVA is used for the remainder of this
chapter as the method of choice because of its ease-of-use. The fact that it requires that we never
calculate any integrals when determining the matrix elements of the Hamiltonian makes it a very
flexible algorithm.

17

Stationary States

** Ex. 1 — Use the EM to calculate the lowest 5 eigenvalues and eigenfunctions for a linear well
V (x) = V0∣x − L

2 ∣ where V0 = 1 over the range 0 < x < 20. You will need to write your own
program to perform the diagonalization after calculating an analytic expression for the potential
matrix element. Compare your results to the DVA for a 50× 50 Hamiltonian. Note: in the DVA
this means that Nx = 50 and in the EM there should be 50 terms in the expansion.

** 1. Show that the potential matrix elements Vm,n are given by

Vn,n = V0

(

L

4
− L

2n2�2
(1− (−1)

n
)

)

for the diagonal elements (n = m) and the off-diagonal elements (n ∕= m) are given by

Vm,n =
V0L

�

[

Sn−m

n−m
− Sn+m

n+m

]

+

L

�2 (n−m)2

[

1 + (−1)n−m − 2Cn−m − (n−m)�Sn−m

]

−

L

�2 (n+m)
2

[

1 + (−1)
n+m − 2Cn+m − (n+m)�Sn+m

]

where Sn+m ≡ sin ((n+m)�/2), Sn−m ≡ sin ((n−m)�/2), Cn+m ≡ cos ((n+m)�/2),
and Cn−m ≡ cos ((n−m)�/2).

To illustrate the use of the DVA algorithm in an interesting physical situation, let’s use it
to calculate the two lowest eigenvalues and eigenstates for a particle of mass 1 u confined in a
potential

V (x) =
1

2
x2 + 8e−

1

2
(x/2)2 . (2.15)

This potential is an harmonic oscillator with a Gaussian barrier separating it into two sides. The
amplitude of the Gaussian obviously determines the extent to which the sides are separated.

pro dva_solver_ex1

; Configure the colors

device,decomposed = 0 & loadct,0,/silent

; Set up the grid

nx = 300 & xlo = -10.0 & xhi = -xlo

x = linspace(xlo,xhi,nx)

; Define the potential

v = 0.5*xˆ2+10.*exp(-0.5*(x/2.)ˆ2)

; Solve the Schrodinger equation using the DVA

sol = dva_solver(x,v,mass = 1.0)

; Plot the results

angstrom = ’!6!sA!r!u!9 %!6!n’

xtitle = ’!6x (’+angstrom+’ !6)’

title = ’!3|!6<x!3|!6E!d0!n>!3|!e2!n, !3|!6<x!3|!6E!d1!n>!3|!6!e2!n’

plot,x,v,thick = 4.0,xtitle = xtitle,$

ytitle = ’!6V (meV)’,title = title, yrange = [5.0,20.0],$

/ystyle

ls = [0,2]

for j = 0,1 do begin

18

2.1 The Discrete Variable Approximation in One Dimension

Figure 2.1: Probability densities corresponding to the lowest two eigenstates (solid and dashed

curves) for a particle of mass 1 u confined in the potential V (x) = 1
2x

2 + 8e−
1

2
(x/2)2 (thick solid

line).

p = abs(sol.psi[*,j])ˆ2

oplot,x,sol.evals[j]+0.1*p*max(v)/max(p),$

linestyle = ls[j],thick = 2.0

plots,!x.crange,[sol.evals[j],sol.evals[j]],$

linestyle = 2,/data

endfor

end

When we run this procedure, DVA_SOLVER_EX1, the probability densities corresponding to
the lowest two eigenstates are plotted, as shown in figure 2.1. Note that these densities are offset in
the potential well by the corresponding energy eigenvalue. It is worth noting that the magnitude of
the probability density in the figure is meaningless compared with the magnitude of the potential.
We have simply scaled the probability density so that it appears on the same scale as the potential.

One interesting thing to investigate is the effect of increasing the amplitude of the Gaussian
barrier that separates one half of the well from the other. As the barrier height increases between
the two sides of the parabolic well, the probability for the particle to be found under the barrier
decreases and the states approach those of two independent parabolic wells. Another way to look

19

Stationary States

Figure 2.2: Probability densities corresponding to the lowest two eigenstates for a particle of
mass 1 u confined in the potential V (x) = 1

2x
2 +10e−

1

2
(x/2)2 . Note the differences with figure 2.1,

specifically that the eigenvalues are closer together.

at this is to examine the limit of an infinitely high barrier that separates the two parabolic wells.
The ground state of the composite system made from the two independent wells is degenerate. By
placing a finite barrier to separate the sides, this degeneracy is removed and the formerly degenerate
ground state is split into two states. If the barrier is high but finite, these states’ eigenvalues are
close in value but not equivalent. As the barrier decreases in height, the difference between the
two lowest eigenvalues increases. Hence the difference between figures 2.1 and 2.2.

We can observe the phenomenon of quantum tunneling by preparing the initial state in
a double-well system (with equal well widths and depths) as a superposition of the lowest two
eigenstates. The probability density of the superposition of the lowest two eigenstates has the
characteristic feature that most of the probability density resides in one of the two wells.[14] The
particle is initially localized in one of the wells. As time goes on, however, the wavefunction evolves
and the probability density ”sloshes” from one side of the well to the other, thus tunneling through
the barrier. Construction of the localized particle as described above is shown in figure 2.3.

Visualization of quantum tunneling in this case requires knowledge of the eigenfunctions
⟨x∣n⟩, specifically the two lowest eigenstates, of the Hamiltonian. Physically we can imagine that
the eigenstates are coupled through some interaction (via radiation perhaps) and that we have

20

2.1 The Discrete Variable Approximation in One Dimension

Figure 2.3: Construction of a particle of mass 1 u localized in one side of a double well potential
given by V (x) = 1

2x
2 + 20e−

1

2
(x/2)2 (thick solid line). The left panel displays the real part of the

lowest two eigenstates ⟨x∣0⟩ (thin line) and ⟨x∣1⟩ (dashed line). Note that the imaginary part of
the eigenstates is zero and the eigenstates have been offset by their energy eigenvalues. The right
panel shows the superposition of the two lowest eigenstates (⟨x∣0⟩+ ⟨x∣1⟩) /

√
2 for which there is

nearly zero amplitude in the left well.

prepared the initial state as a superposition of these two eigenstates,

⟨x∣ ⟩ (0) = 1√
2
(⟨x∣0⟩+ ⟨x∣1⟩) , (2.16)

where ⟨x∣0⟩ and ⟨x∣1⟩ are different eigenstates of the Hamiltonian. Then the wavefunction at any
later time, t, is given by

⟨x∣ ⟩ (t) = 1√
2

(

⟨x∣0⟩e−iE0t/ℏ + ⟨x∣1⟩e−iE1t/ℏ
)

, (2.17)

where i =
√
−1. The time evolution of the probability density is given by P (x, t) = ∣⟨x∣ ⟩ (t) ∣2

which, upon explicit calculation, yields

P (x, t) =
1

2
[∣⟨x∣0⟩∣2 + ∣⟨x∣1⟩∣2 + ⟨x∣1⟩∗⟨x∣0⟩e−i!01t + ⟨x∣0⟩∗⟨x∣1⟩ei!01t] (2.18)

where !01 = E0−E1

ℏ
. This time-dependent probability density, an observable quantity, is real.

The code that shows this time-evolution graphically, an animation, is shown below. Note
that we don’t explicitly use the expanded expression 2.18. Rather we calculate the wavefunction
⟨x∣ ⟩ (t) and then just use the definition P (x, t) = ∣⟨x∣ ⟩ (t) ∣2 using the IDL code prob=abs(psi)ˆ2.
The explicit code that shows how the animation is performed is in the function ANIMATE_TRANSITION_PROB
which is presented in chapter 1.

pro dva_animate_ex1

21

Stationary States

device,decomposed = 0

; Set up the spatial grid

nx = 300 & xlo = -10.0 & xhi = -xlo

x = linspace(xlo,xhi,nx)

; Define the potential

v = 0.5*xˆ2+20.*exp(-0.5*(x/2.)ˆ2)

; Solve the Schrodinger equation using the DVA

sol = dva_solver(x,v,mass = 1.0)

wf = sol.psi & eigvals = sol.evals

n = 0 & m = 1

ret = animate_transition_prob(x,v,wf,eigvals,n,m)

end

Though it is not quite as satisfying as viewing a smooth animation, a sequence of six frames
from this animation is shown in figure 2.4. This shows the time-evolution over one-half of the
period of the motion. This animation illustrates the phenomenon of quantum tunneling. Initially
the particle is localized in the well on the right hand side. Classically it would remain there forever.
However quantum-mechanically it can tunnel from one side to another. It does this periodically
and the frequency with which it performs this motion is known as the tunneling frequency.

Ex. 2 — Compute the eigenvalues of the simple harmonic oscillator potential V (x) = 1
2x

2 where
the potential is defined over the range −10 ≤ x ≤ 10 and the mass of the particle is one atomic
mass unit (i.e. m = 1 u).

1. Plot the lowest five eigenvalues of the harmonic oscillator as a function of Nx where Nx

varies between 10 and 200.

2. Based on these results, what values for Nx are good enough?

Ex. 3 — Calculate and display the probability densities corresponding to the lowest 5 eigenstates
of a particle of mass 1 u confined in the linear potential well V (x) = ∣x∣.

* Ex. 4 — For the linear well of the previous exercise, plot the eigenvalue, En, as a function of
eigenvalue number, n, for the lowest 20 eigenvalues. Note that the accuracy of your result will
depend on the value you choose for Nx as well as the bounds for x that you choose.

* Ex. 5 — Calculate the time evolution of the wavefunction for a particle of mass 1 u initially
in the state ⟨x∣ ⟩ (0) = 1√

2
(⟨x∣0⟩+ ⟨x∣1⟩) under the influence of the potential given by V (x) =

1
2x

2 + Voe
− 1

2
(x/2)2 . Note that ⟨x∣0⟩ and ⟨x∣1⟩ are eigenstates of this potential.

1. Specifically, for values of V0 between 5 and 20, plot the transition energy ΔE = E1 −E0 as
a function of V0.

2. Create animations of the real and imaginary parts of the wavefunction for a half period of
motion for each of these values of V0.

** Ex. 6 — From your results from the previous exercise, describe the qualitative difference you
observe in the time-development of the wavefunction components as the barrier height V0 increases
compared to the motion of the probability density (e.g. do they evolve faster or slower as compared
to the probability density P (x, t)?). Explain this trend.

* Ex. 7 — Which two eigenstates of the potential V (x) = 1
2x

2 + 20e−
1

2
(x/2)2 , when superposed

22

2.1 The Discrete Variable Approximation in One Dimension

Figure 2.4: Time evolution of the probability density (thin line) P (x, t) through one half of a
cycle. The initial state is given by ⟨x∣ ⟩ (0) = 1√

2
(⟨x∣0⟩+ ⟨x∣1⟩) evolving under the influence of

the potential (bold line) given by V (x) = 1
2x

2 + 20e−
1

2
(x/2)2 .

23

Stationary States

as an initial wavefunction, display a probability density that sloshes from side to side within each
of the two wells? Hint: you are looking for n and m in the following wavefunction ⟨x∣ ⟩ (0) =

1√
(2)

(⟨x∣n⟩ + ⟨x∣m⟩). Verify your response through construction and observation of the animated

sequence.

2.2 The Discrete Variable Approximation in Two Dimen-
sions

The two-dimensional Schrödinger equation is written

(

− ℏ
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ V (x, y)

)

⟨x, y∣ ⟩ = E⟨x, y∣ ⟩. (2.19)

The extension of the discretization method that was presented in the previous section to two
dimensions is straightforward. The discretization of x is identical and the discretization of y is
yn = nΔy +min(y) for n = 0, 1, 2, ..., Ny − 1 where Δy = (max(y)−min(y)) / (Ny − 1). With this
mesh in x and y we can write down the approximations to the second derivatives

d2

dx2
≃ (1/Δx)

2
(i+1,n + i−1,n − 2 i,n) (2.20)

and
d2

dy2
≃ (1/Δy)

2
(i,n+1 + i,n−1 − 2 i,n) . (2.21)

Next we define the two parameters

�x =
ℏ
2

2m
(1/Δx)

2
(2.22)

and

�y =
ℏ
2

2m
(1/Δy)

2
. (2.23)

The remaining steps to obtain the Hamiltonian matrix are similar to those of the one-dimensional
system with the final result being

Hi,j,n,m = (2 (�x + �y) + Vi,n) �i,j�n,m

−�x (�i,j+1 + �i,j−1) �n,m

−�y (�n,m+1 + �n,m−1) �i,j . (2.24)

The implementation of this algorithm in IDL is straightforward though the Hamiltonian
matrix will be quite large. We expect that the evaluation of the matrix will be time-consuming
and the diagonalization of the resulting Hamiltonian will be especially so. The four-dimensional
Hamiltonian Hi,j,n,m must be converted into a two-dimensional matrix in order to diagonalize it
(IDL’s eigenvalue/eigenvector function LA_EIGENQL requires a two-dimensional array). There are a
couple of ways that we can approach this. The first is to group the indices i and n into one dimension
and j and m into the other and compute the resulting two-dimensional Hamiltonian. If the four-
dimensional Hamiltonian was Nx by Ny by Nx by Ny then the two-dimensional Hamiltonian will be
Nx×Ny by Nx×Ny. The other way to do this is to compute the four-dimensional Hamiltonian and
then use the IDL function REFORM to reduce it to two-dimensions (but keeping the same number
of matrix elements). This latter approach is the one that we adopt because, as you will see, the

24

2.2 The Discrete Variable Approximation in Two Dimensions

code for evaluating the matrix elements looks very similar to equation 2.24. The way that we’ve
implemented results in fast evaluation of the matrix elements too.

The function, DVA_SOLVER_2D, calculates the eigenvalues and eigenfunctions for a two-
dimensional potential. Even though we’ve reduced the dimensionality of the Hamiltonian we still
must calculate just as many matrix elements. A brute-force approach involves looping over all four
dimensions. When programming in IDL, looping over indices is oftentimes a losing proposition
(i.e. slow). But we can achieve some economy by looping over only two of the dimensions and
invoking our vector Kronecker �-function, DS_DELTA, in the evaluation. This works well because it
takes advantage of the vector nature of the EQ operator. The way that we’ve written DS_DELTA, we
can use as the first argument an array and a scalar as the second argument. The result will be an
array with the same dimensions as the first argument. As equation 2.24 suggests, the hamiltonian
is four-dimensional: Nx ×Ny ×Nx ×Ny. IDL’s eigenvalue/eigenvector function LA_EIGENQL will
only work on a two-dimensional matrix so after calculating our four-dimensional array, the IDL
function REFORM is used to convert it into two dimensions. The remainder of the algorithm is simply
extracting out the solution, the eigenvalues and eigenvectors, from the result of LA_EIGENQL.

function dva_solver_2d,x,y,v,mass = mass,range = range

compile_opt idl2,hidden

if n_elements(mass) eq 0 then mass = 1.0

if n_elements(range) eq 0 then range = [0,n_elements(x)-1]

dx = x[1] - x[0] & dy = y[1] - y[0]

nx = n_elements(x) & ny = n_elements(y)

hbarc = 1973d3 & mc2 = mass*931.5d9

bx = (hbarcˆ2)/(2.*mc2*dxˆ2) & by = (hbarcˆ2)/(2.*mc2*dyˆ2)

h = fltarr(nx,ny,nx,ny)

ivec = indgen(nx) & nvec = indgen(ny)

i = rebin(ivec,nx,ny,/sample)

n = rebin(transpose(nvec),nx,ny,/sample)

for m = 0,ny-1 do begin

for j = 0,nx-1 do begin

h[*,*,j,m] = (2.0*(bx+by)+v[i,n])*ds_delta(i,j)*ds_delta(n,m)-$

bx*(ds_delta(i,j+1)+ds_delta(i,j-1))*ds_delta(n,m)-$

by*(ds_delta(n,m+1)+ds_delta(n,m-1))*ds_delta(i,j)

endfor

endfor

h = reform(h,nx*ny,nx*ny)

evals = la_eigenql(h,eigenvectors = evec,range = range)

esort = sort(evals)

evals = evals[esort]

evec = evec[*,esort]

; Now disentangle the eigenvectors into the more

; intuitive format [nx,ny,n_elements(evals)]

num_evals = n_elements(evals)

psi = complexarr(nx,ny,num_evals)

i = indgen(nx)

for k = 0,num_evals-1 do $

for n = 0,ny-1 do psi[i,n,k] = evec[n*nx:(n+1)*nx-1,k]

str = {psi:psi,evals:evals}

25

Stationary States

return,str

end

The simple interface to the function makes it easy to use. Required input parameters include
a vector of x-values (assumed to be equally spaced), a vector of y-values (also assumed to be equally
spaced), and a two-dimensional array V defining the potential over the range of x- and y-values.
Optional input keywords include mass, the particle’s mass in atomic mass units and RANGE which
specifies the range of eigenvalues/eigenvectors to return in the diagonalization. This turns out to
be a nice ”knob to turn” in the numerical evaluation because it takes less time to calculate a few
eigenvalues than it does for more eigenvalues, especially for large Hamiltonian matrices.

As a ”warm-up” exercise with this function we can compute the lowest six eigenvalues for a
two-dimensional isotropic harmonic oscillator. For a particle of mass 1 u the ground state energy
ℏ!0 is given by

ℏ!0 = ℏc

√

k

mc2
. (2.25)

Assuming k = 1 (or equivalently V (x, y) = 1
2

(

x2 + y2
)

), we have ℏ!0 = 2.044 meV. The energy
eigenvalues for the oscillator are given by En,m = (n+m+ 1) ℏ!0 for n,m = 0,±1,±2, ⋅ ⋅ ⋅ . There
is obvious degeneracy among the eigenvalues. For instance E0,1 = E1,0 = 2ℏ!0, E0,2 = E2,0 =
E1,1 = 3ℏ!0, etc. For −10 ≤ x ≤ 10, −10 ≤ y ≤ 10, Nx = Ny = 25 the lowest six eigenvalues are
shown in table 2.3.

Table 2.3: Comparison of the accuracy in the lowest six eigenvalues for the 2-D isotropic simple
harmonic oscillator for Nx = Ny = 25

n + m En,m (DVA) En,m (exact) % error

0 2.000 2.044 2.2
1 3.953 4.089 3.4
1 3.953 4.089 3.4
2 5.809 6.133 5.6
2 5.809 6.133 5.6
2 5.906 6.133 3.8

It is clear from the table that the function returns eigenvalues that have discrepancies of
a few percent, and the difference increases as the eigenvalue index increases. Furthermore the
degeneracy is not even maintained for higher eigenvalues.2

As in the one-dimensional DVA algorithm, we must calculate the accuracy of this algorithm.
In order to do so we used the function DVA_2D_SOLVER to calculate the lowest three eigenvalues
for the two-dimensional harmonic oscillator for a particle of mass 1 u. The potential is defined
as 1

2

(

x2 + y2
)

over the range −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. The results of the calculation, the
percent error, are shown in table 2.4. The eigenvalues for this potential are known exactly so the
comparisons are straightforward. Performance is certainly an issue when diagonalizing a matrix
of this size. On my laptop computer it took 0.6, 19, and 192 seconds to solve the Schrödinger
equation for Nx = Ny = 25, 50, and 75 respectively. Note that there are over 3.9× 105, 6.25× 106,
and 31.6× 106 matrix elements for the Nx = Ny = 25, 50, and 75 cases, respectively.

2This point is masked by the number of digits shown in the calculated eigenvalues in the second column.

26

2.2 The Discrete Variable Approximation in Two Dimensions

Table 2.4: Comparison of the accuracy in the lowest three eigenvalues for different grid sizes

n+m+1 Nx = Ny = 25 (%) Nx = Ny = 50 (%) Nx = Ny = 75 (%)

1 2.2 0.51 0.22
2 3.4 0.77 0.34
3 5.6 1.22 0.52

Though the algorithm is clearly the most accurate for the smaller eigenvalues, we can use it
for effective visualizations and with the same qualifying remark as we made for the function in one
dimension, DVA_SOLVER. Accuracy in calculation of the larger eigenvalues requires diagonalization
of large matrices. Given the inaccuracy of this algorithm we should briefly discuss why we chose
to describe the implementation of the discrete variable approximation rather than one of the more
accurate methods for computing the eigenvalues and eigenfunctions for a potential.

In short, the DVA is a very general technique that does not require more information about
the physical system than the potential. The user simply supplies a vector or array of values for the
potential defined over a spatial grid. It is worth mentioning one other algorithm that has been used
in calculating the eigenstates for two-dimensional potentials with closed boundaries. An algorithm
that is particularly accurate, especially for quantum billiards problems, is the Expansion Method

(EM) as described in the paper by Kaufman et. al.[13] and applied to a one-dimensional system
in the previous section. In this method, for computational purposes, the potential is inscribed in a
rectangular region of space and the eigenstates for the potential are expressed as an expansion in the
known eigenstates of the rectangular region. Determining the matrix elements of the Hamiltonian
requires computing the overlap integral

Vi,j,n,m = ⟨j,m∣V ∣i, n⟩ (2.26)

=

∫ ∫

dx dy ⟨j,m∣x, y⟩⟨x, y∣i, n⟩V (x, y) (2.27)

where the ∣i, n⟩ are the eigenstates for the rectangular region in which the potential V (x, y) is
inscribed. Note that i is not used here as the imaginary unit but rather an index specifying the
particular eigenvalue. The authors in [13] point out that the most benefit in terms of computational
speed is obtained if the Vi,j,n,m can be calculated analytically a priori. For a certain example given
in [13] a 400×400 matrix was diagonalized resulting in the first 50 eigenvalues being within 0.13%
of the exact values. Note that the DVA for the isotropic harmonic oscillator exhibited less accuracy
for a 625×625 matrix (Nx = 25, Ny = 25). For accuracy, the interested reader is encouraged to
consult the EM reference. For the remainder of this chapter we will perform calculations using
the DVA for Nx = Ny = 50 with an emphasis on visualization rather than accuracy of tenths of
a percent or less. Our interest here is in using a simple algorithm to get the correct qualitative
behavior.

2.2.1 The Stadium Potential

In two dimensions we can consider many different types of potentials that have a closed boundary.
Textbooks on quantum mechanics often treat the two dimensional infinite square well for instance.
And we have already looked at the two dimensional isotropic harmonic oscillator. In the last twenty
years considerable interest has focused on the so-called quantum billiards. Because the motion of
a classical particle in a ”stadium” potential yields chaotic motion, researchers investigated the
quantum analog of the stadium potential well, hoping to gain insight into quantum chaos. The

27

Stationary States

stadium potential has a boundary defined by the following:

(

x+
L

2

)2

+ y2 = R2 for x ≤ −L
2

y = ±R for −L
2
≤ x ≤ L

2
(

x− L

2

)2

+ y2 = R2 for x ≥ L

2
.

For our first visualization we calculate the lowest six eigenvalues and eigenfunctions for −V0 = −50
meV, L = 2 Å, and R = 9 Å. The corresponding probability densities are shown in figure 2.5.
The eigenvalues for these lowest states are closely spaced: -49.88, -49.70, -49.67, -49.44, -49.44,
and -49.33 meV. These are not degenerate to the precision calculated (masked by rounding the
numbers). The program that performs the calculation of the eigenvalues and eigenstates for the
stadium potential is DVA_SOLVER_2D_STADIUM, shown below. In this function, the input parameters
are Nx, Ny, and Neig . Nx and Ny are the sizes of each of the two dimensions and Neig is the
eigenstate number to display.

pro dva_solver_2d_stadium, nx = nx, ny = ny,neig = neig

device,decomposed = 0

if n_elements(neig) eq 0 then neig = 0

if n_elements(range) eq 0 then range = [0,10]

loadct,1,/silent

if n_elements(nx) eq 0 then nx = 25

if n_elements(ny) eq 0 then ny = 25

x = linspace(-10.0,10.0,nx)

y = linspace(-10.0,10.0,ny)

xm = rebin(x,nx,ny,/sample)

ym = rebin(transpose(y),nx,ny,/sample)

v = 0.0*xm & vo = -50.0

l = 2.0 & r = 9.0

; Region I

xc1 = -0.5*l & yc1 = 0.0

r1_2 = (xm-xc1)ˆ2+(ym-yc1)ˆ2

condI = (r1_2 le rˆ2)

; Region III

xc3 = 0.5*l & yc3 = 0.0

r3_2 = (xm-xc3)ˆ2+(ym-yc3)ˆ2

condIII = (r3_2 le rˆ2)

; Region II

condII = (xm ge xc1) and (xm le xc3) and (ym ge -r) and (ym le r)

cond = (condI or condIII or condII)

indices = where(cond,count)

ind = array_indices(xm, indices)

if count gt 0 then v[ind[0,*],ind[1,*]] = vo

sol = dva_solver_2d(x,y,v,range = range)

tfinish = systime(/seconds)

prob = abs(sol.psi)ˆ2

window,0 & plotimage,bytscl(prob[*,*,neig])

28

2.2 The Discrete Variable Approximation in Two Dimensions

contour,v,xm,ym,/noerase,xrange = [min(x),max(x)],$

ystyle = 5,xstyle = 5,yrange = [min(y),max(y)]

print,sol.evals[neig]

end

2.2.2 The Cardioid Potential

Another family of boundaries that possess interesting eigenvalue properties are polar figures. One
such boundary is the cardioid. This polar curve can be easily parameterized using the complex
number z = x+ iy where i =

√
−1. The cardioid is defined by

z = peit +
p

2
e2it + xc + iyc (2.28)

where t ∈ {0, 2�}, the center is located at (xc, yc), and p is a scale factor for the shape. This yields

x (t) =
p

2
(2cos t+ cos 2t) + xc (2.29)

and
y (t) =

p

2
(2sin t+ sin 2t) + yc. (2.30)

The potential is defined as −V0 within the boundary and zero outside. The probability densities
corresponding to the lowest six eigenstates for −V0 = −50 meV and p = 7 Åare shown in figure
2.8. The eigenvalues for these lowest states are closely spaced: -49.84, -49.63, -49.57, -49.31, -
49.31, and -49.14 meV. These are not degenerate to the precision calculated (masked by rounding
the numbers). The program that displays the probability density corresponding to a user-specified
eigenstate for the cardioid potential is DVA_SOLVER_2D_CARDIOID. The input keywords are identical
to those already discussed for DVA_SOLVER_2D_STADIUM so they will not be repeated.

pro dva_solver_2d_cardioid, nx = nx, ny = ny,neig = neig

device,decomposed = 0

if n_elements(neig) eq 0 then neig = 0

if n_elements(range) eq 0 then range = [0,10]

loadct,1,/silent

if n_elements(nx) eq 0 then nx = 25

if n_elements(ny) eq 0 then ny = 25

x = linspace(-10.0,10.0,nx)

y = linspace(-10.0,10.0,ny)

xm = rebin(x,nx,ny,/sample)

ym = rebin(transpose(y),nx,ny,/sample)

v = 0.0*xm

vo = -50.0

n = 100 & dt = 2.*!pi/(n-1.0) & t = dt*findgen(n)

i = complex(0.0,1.0)

p = 7.0

z = p*exp(i*t)+0.5*p*exp(2.*i*t)

xtrace = float(z)-2.0

29

Stationary States

Figure 2.5: Probability densities corresponding to the lowest six eigenstates of the stadium
potential. The calculation was done for a stadium depth of −50 meV and Nx = Ny = 50. Note
that the eigenstates are labeled by a single index rather than a pair due to the output of the IDL
function.

30

2.2 The Discrete Variable Approximation in Two Dimensions

Figure 2.6: Time evolution of the probability density P (x, t) for a state composed of the low-
est two eigenstates for a stadium billiard potential. The initial state is given by ⟨x∣ ⟩ (0) =
(⟨x∣0⟩+ ⟨x∣1⟩) /

√
2. The calculation was done for a stadium depth of −50 meV and Nx = Ny = 45.

31

Stationary States

Figure 2.7: Time evolution of the probability density P (x, t) for the initial state ⟨x∣ ⟩ (0) =
(⟨x∣5⟩+ ⟨x∣6⟩) /

√
2. The calculation was done for a stadium depth of −50 meV and Nx = Ny = 45.

32

2.2 The Discrete Variable Approximation in Two Dimensions

ytrace = imaginary(z)

for k = 0,nx-1 do begin

for j = 0,ny-1 do begin

if inside(xm[k,j],ym[k,j],xtrace,ytrace) then v[k,j]=vo

endfor

endfor

sol = dva_solver_2d(x,y,v,range = range)

prob = abs(sol.psi)ˆ2

window,0 & plotimage,bytscl(prob[*,*,neig])

contour,v,xm,ym,/noerase,xrange = [min(x),max(x)],$

ystyle = 5,xstyle = 5,yrange = [min(y),max(y)]

print,sol.evals[neig]

end

* Ex. 8 — Compute the eigenfunctions and eigenvalues for a 150 meV deep well whose boundary
is defined by an equilateral triangle with the vertices (-10,-10),(10,-10) and (0,−10+

√
300) (0 meV

outside of the boundary).

1. Verify that there are no imaginary components to the wavefunction for the lowest six eigen-
states.

2. Plot the lowest six eigenstates.

3. Does the symmetry of the well suggest any possible degeneracies and is this borne out in
your visualizations?

33

Stationary States

Figure 2.8: Probability densities corresponding to the lowest six eigenstates of the cardioid
potential, equation 2.28, with −V0 = −50 meV and p = 7 Å.

34

2.2 The Discrete Variable Approximation in Two Dimensions

Figure 2.9: Time evolution of the probability density P (x, t) for the initial state ⟨x∣ ⟩ (0) =
(⟨x∣0⟩+ ⟨x∣2⟩) /

√
2 in a potential well whose boundary is defined by a cardioid. The calculation

was done for a stadium depth of −50 meV, p = 7 and Nx = Ny = 50.

35

Stationary States

36

Chapter 3

Quantum Rotations

The examples covered in the previous chapter assume that the wavefunction is constrained to a
box. When the potential is periodic then this assumption no longer holds and we must consider a
wavefunction constructed from the harmonics with the same periodicity as the potential. In this
chapter we consider a few examples of quantum systems in which the rotational symmetry of the
potential plays a role in the resulting eigenvalues and eigenvectors.

3.1 Hindered Methyl Rotations

Many chemical compounds contain molecular sub-units, common among these sub-units are the
methyl groups. Composed of a single carbon atom and three hydrogen atoms, the motion of the
methyl group can often be characterized as a single particle. That is, a single potential determines
the overall motion of the CH3 unit. In many cases the situation is simplified by the fact that
the three-fold symmetry of the molecule itself causes the intermolecular potential to be three-fold
symmetric. Thus the potential can be written as a sum of 3m-fold symmetric terms, usually
expressed as an expansion of the potential:

V (�) =

∞
∑

m=0

v3mcos(3m� + �m), (3.1)

where � is the coordinate that specifies the orientation of the three-fold rotor, and v3m and �m are
the magnitude and phase, respectively, of the Fourier expansion of the potential. Often the lowest
two terms dominate the expansion and the potential can be expressed as

V (�) =
V3
2

(1− cos3�) (3.2)

where V3 is the barrier height. Therefore the full Hamiltonian can be written

H = −ℏ
2

2I

d2

d�2
+
V3
2

(1− cos3�) (3.3)

where I is the moment of inertia of the molecular sub-unit.

* Ex. 9 — Derive an approximate expression for the lowest eigenvalue in the limit of a very high
barrier. Hint: Consider a small angle expansion of the Schrödinger equation for a methyl rotor
about � = 0 to second order in � and compare with the Schrödinger equation for a simple harmonic
oscillator.

37

Quantum Rotations

3.2 Determining the Hamiltonian Matrix

In order to determine the Hamiltonian matrix, we will use a variant of the DVA. But rather than
determining the amplitudes of the wavefunction at a specified set of coordinates, we will determine
the amplitudes of a set of known eigenfunctions. We need to evaluate the matrix elements using
a basis of eigenfunctions that make sense for this potential. In particular we can choose a basis of
free-rotor eigenfunctions, exp (im�) which, of course, diagonalize the free-rotor Hamiltonian

HFR = −ℏ
2

2I

d2

d�2
. (3.5)

However it would be better to choose free-rotor eigenfunctions such that they reflect the symmetry
of the potential and diagonalize the free-rotor Hamiltonian. These eigenfunctions are given by

⟨�∣3m+ l⟩ = 1√
2�
ei(3m+l)�,m = 0,±1,±2, ⋅ ⋅ ⋅ (3.6)

for l = [−1, 0, 1]. It is important to point out here that we will need to diagonalize three Hamilto-
nians corresponding to each of the l = [−1, 0, 1] terms.

We calculate the matrix elements of the free-rotor Hamiltonian by inserting the free-rotor
basis states into the free-rotor Hamiltonian and calculate ⟨n∣HFR∣m⟩ as follows

⟨3n+ l∣HFR∣3m+ l⟩ =

∫ 2�

0

d�⟨3n+ l∣�⟩HFR⟨�∣3m+ l⟩ (3.7)

=
1

2�

∫ 2�

0

d�e−i(3n+l)�

(

−ℏ
2

2I

d2

d�2

)

ei(3m+l)� (3.8)

=
ℏ
2

2I
(3m+ l)

2
�m,n. (3.9)

Note that the quantity ℏ
2/2I is frequently referred to as the rotational constant and is represented

by B. In this derivation then the free-rotor energy is given by EFR = B (3n+ l)2 where n =
0,±1,±2, ⋅ ⋅ ⋅ and l can take on values of -1, 0, and 1.

We calculate the matrix elements of the potential similarly:

⟨3n+ l∣V ∣3m+ l⟩ =

∫ 2�

0

d�⟨3n+ l∣�⟩V (�)⟨�∣3m+ l⟩ (3.10)

=
1

2�

∫ 2�

0

d�e−i(3n+l)� V3
2

(

1− 2e3i� − 2e−3i�
)

ei(3m+l)� (3.11)

=
V3
4

(2�m,n − �m,n+1 − �m,n−1) . (3.12)

So the matrix elements of the Hamiltonian Hm,n = ⟨3n+ l∣H ∣3m+ l⟩ are

Hm,n = B (3m+ l)
2
�m,n +

V3
4

(2�m,n − �m,n+1 − �m,n−1) . (3.13)

Note that had we selected the free-rotor basis set

⟨�∣m⟩ = 1√
2�
eim�,m = 0,±1,±2, ⋅ ⋅ ⋅ . (3.14)

38

3.2 Determining the Hamiltonian Matrix

then the Hamiltonian matrix would consist of diagonal elements (due to the free-rotor part of the
Hamiltonian) and elements that are further off-diagonal than when we use those with the three-fold
symmetry as in equation 3.6. The result of our choice is that it takes a smaller matrix—and hence
shorter evaluation time—to get the same accuracy as the expansion in exp (im�), even though we
must diagonalize three Hamiltonians.

** Ex. 10 — Consider a potential with a three-fold and a six-fold term: V (�) = V3

2 (1− cos 3�)+
V6

2 (1− cos 6�). How does equation 3.13 change with the addition of this term?

3.2.1 Solving the Hamiltonian

The construction of the Hamiltonian described in the last section, equation 3.13, is as straightfor-
ward to implement in IDL as it is for the one-dimensional DVA discussed in the previous chapter.
The function METHYL_ROTATION performs the relevant calculation and is shown below. This func-
tion has a number of input keywords and output keywords. Note that the function has been written
so that they are all optional (though the function is not necessarily that useful if no output key-
words are specified since the return value for the function is a logical 1 or 0). The input keywords
are V3, the barrier height, LMAX, the maximum value for the expansion in equation 3.6 but here
LMAX is the maximum value for m in that expansion. The rotational constant, B, is 0.654 meV for
a methyl rotor but the user can re-define it via this keyword. The EIGENVALUES output keyword
is a vector of eigenvalues from the solution of the Schrödinger equation with the Hamiltonian,
equation 3.3. If you specify THETA then the function will return an equally-spaced grid of 200
values between 0 and 2� then the output keyword PSI returns a matrix of eigenvectors from the
diagonalized Hamiltonian. PSI has the dimensions PSI[N,3*(2*LMAX+1)] where N, the number of
points that define the angular grid, is 200 unless the user specifies otherwise as an input keyword.
Finally, if the function fails for some reason, it will return a 0B and the keyword ERR_MESSAGE will
provide some information why the function failed.

function methyl_rotation, V3 = v3, $

LMAX = lmax, $

B = b, $

EIGENVALUES = eigenvalues, $

PSI = psi, $

THETA = theta, $

N = n, $

ERR_MESSAGE = err_message

compile_opt idl2,hidden

catch,the_error

ERR_MESSAGE = ’No errors detected’

if the_error ne 0 then begin

catch,/cancel

ERR_MESSAGE = !error_state.msg

return,0B

endif

if n_elements(V3) eq 0 then v3 = 42.5

if n_elements(LMAX) eq 0 then lmax = 9

if n_elements(B) eq 0 then b = 0.654

if n_elements(N) eq 0 then n = 200

39

Quantum Rotations

nsize = 2*lmax + 1 ; total number of terms in expansion

lo = indgen(lmax)+1

lvec = [-reverse(lo),0,lo]

l = rebin(lvec,nsize,nsize,/sample)

lp = transpose(l)

k = [-1,0,1] & nk = n_elements(k)

c = 1./sqrt(2.*!pi)

xlo = 0.0 & xhi = 2.*!pi

xo = linspace(xlo,xhi,n)

x = rebin(transpose(xo),nsize,n,/sample)

lm = rebin(lvec,nsize,n,/sample)

if arg_present(theta) then begin

psi_re = fltarr(nk*nsize,n)

psi_im = fltarr(nk*nsize,n)

endif

count = 0

for i = 0,nk-1 do begin

h = ((3.*l+k[i])ˆ2)*B*ds_delta(l,lp)+0.25*v3*$

(2.0*ds_delta(l,lp) - $

ds_delta(l,lp+1)-ds_delta(l,lp-1))

evalso = real_part(la_eigenql(h,/double,eigenvectors = eveco))

evalso = real_part(evalso)

if arg_present(theta) then begin

; Cycle through each of the eigenvalues and construct the

; real and imaginary parts of the wavefunction. But only do

; this if the user has asked for it. It is an expensive

; operation.

for j = 0,nsize-1 do begin

u = eveco[*,j]

argm = (3.*lvec+k[i])#xo

psi_re[count,*] = c*u#cos(argm)

psi_im[count,*] = c*u#sin(argm)

count++

endfor

endif

if (i gt 0) then evals = [evals,evalso] else evals = evalso

endfor

esort = sort(evals)

eigenvalues = evals[esort]

if arg_present(theta) then begin

psi = complex(psi_re,psi_im)

psi = transpose(psi[esort,*])

theta = xo

endif

catch,/cancel

return,1B

end

40

3.2 Determining the Hamiltonian Matrix

Figure 3.1: Probability densities corresponding to the lowest 9 eigenstates (thin, solid curves) for
a methyl rotor confined in three-fold potential with a 40 meV barrier height (thick solid curve).

The probability densities corresponding to the 9 lowest eigenstates for V3 = 40 meV are
displayed in figure 3.1. They are offset in the vertical direction by their corresponding eigenvalues
in meV. Note that the probability densities for the lowest three eigenstates are indistinguishable
from each other on this scale, as they are in the next three. Only the the three probability densities
with eigenstates near the top of the well show distinction from each other. Indeed two of them lie
on top of each other. The lowest 9 eigenvalues and their degeneracies are shown in table 3.1.

Table 3.1: Lowest eigenvalues for V3 = 40 meV

eigenvalue (meV) degeneracy

7.281 1
7.284 2
20.923 2
21.021 1
31.858 1
32.823 2

The spectrum of eigenvalues changes quite dramatically as the barrier height V3 changes.
Even without doing any numerical computations we can guess what the behavior is in two ex-
tremes: zero barrier and very high barrier. When the barrier is very small or zero, the eigenvalues
correspond to those of a free rotor

En =
ℏ
2

2I
(3n+ l)

2
(3.15)

= B (3n+ l)2 . (3.16)

41

Quantum Rotations

For a very high barrier the potential can be approximated well by three adjacent parabolic wells—
at least for the lowest lying eigenstates. The eigenstates are very nearly triply-degenerate harmonic
oscillator states whose eigenvalues are given by

Er =

(

r +
1

2

)

ℏ!0 (3.17)

where

!0 =

√

9V3
2I

. (3.18)

For a derivation of this equation, see exercise 9.

The manner in which these two extremes are joined can be determined in a straightforward
numerical calculation of the eigenvalues as a function of V3. The calculation is illustrated in the
code listing for METHYL_EIGENVALUE_SPECTRUM and the spectrum is displayed in figure 3.2.

pro methyl_eigenvalue_spectrum

; This procedure creates a plot of the eigenvalue

; spectrum as a function of barrier height.

nv3 = 101 & v3 = linspace(0.0,100.0,nv3)

lmax = 7

eigvals = fltarr(3*(2*lmax+1),nv3)

for j = 0,nv3-1 do begin

ret = methyl_rotation(lmax = lmax,v3 = v3[j],eigenvalues = eout)

eigvals[*,j] = eout

endfor

xsize = 800 & ysize = 600

window,0,xsize = xsize,ysize = ysize

yr = [0.0,100.0] & xr = [min(v3),max(v3)]

plot,v3,eigvals[*,0],yrange = yr,/ystyle,xrange = xr,/xstyle, /nodata,$

psym = 0,linestyle = ls,background = fsc_color(’white’),color = fsc_color(’black’), $

xtitle = ’!6V!d3!n (meV)’,ytitle = ’!6Eigenvalues (meV)’, $

title = ’!6Eigenvalues of the Methyl Rotor’,charsize = 1.5

for j = 0,3*(2*lmax+1)-1 do oplot,v3,eigvals[j,*],linestyle = ls,psym = 0, $

color = fsc_color(’red’),thick = 2.0

end

Ex. 11 — What happens to the value of the lowest eigenvalue if you double the mass of the rotor
(i.e. increase I, the moment of inertia, by a factor of 2)? Assume that the barrier height is very
large.

Ex. 12 — Calculate the ground state energy (i.e. lowest eigenvalue) for barrier heights V3 varying
between 0 and 100 meV. Compare this (in a plot) with the approximate expression you derived
previously in exercise 9 for the ground state energy in the harmonic approximation. How quickly
do these converge, if at all?

Ex. 13 — Calculate the transition between the ground state and first excited state for 0 ≤
V3 (meV) ≤ 100 for a methyl rotor. What is the approximate functional form for ΔE01 vs. V3
for large V3? (Hint: plot ΔE01 vs. V3 on a semi-logarithmic scale.) Based on your result, do you

42

3.2 Determining the Hamiltonian Matrix

Figure 3.2: The eigenvalue spectrum as a function of barrier height V3. Note how many of the
lower lying branches merge as the barrier height V3 increases. Though it appears that two branches
merge into one, in reality one of these branches is actually doubly degenerate so that three branches
really make up the single ”merged” branch at high barrier heights.

think that rotational tunneling is a good or bad probe of the barrier height for methyl-containing
systems?

** Ex. 14 — Consider a potential with a three-fold and a six-fold term: V (�) = V3

2 (1− cos 3�)+
V6

2 (1− cos 6�). How do the eigenvalues shown in figure 3.2 change for different barrier heights,
V6?

3.2.2 Transitions

Transitions between eigenstates of the three-fold potential can be viewed easily with the methods
developed so far. In the same way that we constructed an initial state composed of a superposition
of two eigenstates in the last chapter, we can do the same here. Let’s consider the initial state
given by

⟨�∣ ⟩ (0) = 1√
2
(⟨�∣0⟩+ ⟨�∣1⟩) (3.19)

where ⟨�∣0⟩ is the lowest energy eigenstate for the system and ⟨�∣1⟩ is the first excited state. This
is shown in figure 3.3 for V3 = 40 meV.

The code to view the animation is shown below.

pro animate_methyl_transition,n,m

; Animates the transition

43

Quantum Rotations

Figure 3.3: Polar plot of the time-evolution for transitions between the lowest two eigenstates
for V3 = 40 meV. The initial state is an equal mixture of the two lowest eigenstates. Over time
the ”particle” tunnels from one potential minimum to another. The potential is shown as the line
and the probability density is shown as the filled black region.

44

3.2 Determining the Hamiltonian Matrix

; between the nth and mth eigenstates for the

; hindered methyl rotor.

if n_params() ne 2 then begin

n = 0 & m = 1

endif

v3 = 40.0 ; barrier height in meV

ret = methyl_rotation(v3 = v3,eigenvalues = eout, $

psi = psi,theta = theta)

v = 0.5*(1.0-cos(3.*theta))

wfn = psi[*,n] & wfm = psi[*,m]

wn = eout[n]/0.6528 & wm = eout[m]/0.6528

i = complex(0.0,1.0)

period = 2.*!pi/abs(wn-wm)

nt = 300 & t = linspace(0.0,2*period,nt)

wf = wfn#exp(-i*wn*t) + wfm#exp(-i*wm*t)

prob = abs(wf)ˆ2

xr = [-1.,1.] & yr = xr

sf = 0.75*max(v)/max(prob)

xsize = 500 & ysize = 500 & winvis = 0

window,winvis,xsize = xsize,ysize = ysize

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

f = ’(f10.2)’

for j = 0,nt-1 do begin

wset,winpix

title = ’T = ’+strtrim(string(1.e-3*t[j],format = f),2) + ’ ns’

plot,v,theta,psym = 0,thick = 2.0,color = fsc_color(’black’), $

background = fsc_color(’white’),/nodata,/polar, $

xrange = xr,yrange = yr,xstyle = 5,ystyle = 5,$

title = title,charsize = 2

oplot,v,theta,thick = 2.0,color = fsc_color(’blue’),/polar

oplot,sf*prob[*,j],theta,thick = 2.0,color = fsc_color(’red’),/polar

r = sf*prob[*,j] & dr = 0.1*r

polyfill,[0,r*cos(theta)],[0,r*sin(theta)],$

color = fsc_color(’red’)

wset,winvis

device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]

endfor

end

Ex. 15 — View animations of the tunneling transitions m = 0 → 1 and m = 0 → 2 for V3 = 40
meV. What is the primary difference you observe in the time evolution? Hint: Look at the time-
evolution of the initial states 1√

2
(⟨�∣0⟩+ ⟨�∣1⟩) and 1√

2
(⟨�∣0⟩+ ⟨�∣2⟩) respectively.

The quantum analog of librational motion—also known as torsional oscillation—is shown in
figure 3.4 (again, V3 = 40 meV). It is clear from the figure that the probability density oscillates
within each of the potential minima.

45

Quantum Rotations

Figure 3.4: Polar plot of the time-evolution for transitions between the m = 0 and m = 3
eigenstates for V3 = 40 meV. The initial state is an equal mixture of these two eigenstates. Note
how the probability density oscillates within each of the three wells. This is the quantum analog
of libration—torsional oscillation. The potential is shown as the line and the probability density
is shown as the filled black region.

46

3.3 Hindered Dumbell Rotations

3.3 Hindered Dumbell Rotations

The hydrogen molecule, H2, is composed of two hydrogen atoms that are nearly free to rotate in
three dimensions. However there have been numerous experiments performed where researchers
have adsorbed H2 onto surfaces and into matrices (porous materials) where interactions with the
surfaces or matrix leads to hindered rotations. Computation of H2’s energy spectrum is there-
fore quite useful so that one can compare the model’s transitions between eigenstates to the
experimentally-obtained energy spectrum.

H2 molecules are spherical to an excellent approximation and, as such, form an idealized
three-dimensional rotor. For more details on the development that follows, consult any standard
undergraduate text on quantummechanics such as [2]. The most natural way to describe the system
is in spherical coordinates. For zero potential the Schrödinger equation in spherical coordinates is
given by

− ℏ
2

2m

[

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(

∂2

∂�2
+ cot �

∂

∂�
+

1

sin2�

∂2

∂�2

)]

⟨r, �, �∣ ⟩ = E⟨r, �, �∣ ⟩. (3.20)

This equation is separable so the wavefunction is separable: ⟨r, �, �∣ ⟩ = ⟨r∣f⟩⟨�, �∣g⟩. To a first
approximation we can assume that the distance between nuclei in a diatomic molecule like H2

is fixed. This means that the r−dependence is uninteresting. Furthermore we will only con-
sider potentials for which there is no r−dependence and only orientational dependence. Since the
Schrödinger equation in spherical coordinates is separable we will focus only on the orientational
part.

The eigenvalue form of the orientational part of the Schrödinger equation is given by

−ℏ
2

(

1

sin�

∂

∂�

(

sin�
∂

∂�

)

+
1

sin2�

∂2

∂�2

)

Yℓ,m (�, �) = l (l + 1)ℏ2Yℓ,m (�, �) (3.21)

where the eigenvalues are given by ℓ for ℓ = 0, 1, 2, ⋅ ⋅ ⋅ ; m = −ℓ,− (ℓ− 1) , ⋅ ⋅ ⋅ , 0, ⋅ ⋅ ⋅ , (ℓ− 1) , ℓ;
and Yℓ,m (�, �) are the spherical harmonics. The spherical harmonics are defined as

Yℓ,m (�, �) =

√

(2ℓ+ 1)

4�

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos �) eim� (3.22)

where the Pm
ℓ is an associated Legendre function. Note that the mass factor has dropped out due

to the way in which the Schrödinger equation has been separated. (Actually it is included in the
”uninteresting” radial equation.) This equation is often written in operator form as

L2Yℓ,m (�, �) = l (l + 1) ℏ2Yℓ,m (�, �) (3.23)

where

L2 ≡ −ℏ
2

(

1

sin�

∂

∂�

(

sin�
∂

∂�

)

+
1

sin2�

∂2

∂�2

)

. (3.24)

For an orientational potential, V (�, �), we can assume that the wavefunction that satisfies the ori-
entational part of the Schrödinger equation can be expanded in a series of the spherical harmonics,
Yl,m (�, �). Therefore we can write down the matrix elements for the Hamiltonian as

Hℓ,ℓ′,m,m′ = Tℓ,ℓ′,m,m′ + Vℓ,ℓ′,m,m′ (3.25)

= ⟨ℓ′,m′∣L
2

2I
∣ℓ,m⟩+ ⟨ℓ′,m′∣V (�, �) ∣ℓ,m⟩ (3.26)

= Bℓ (ℓ+ 1) �ℓ,ℓ′�m,m′ + ⟨ℓ′,m′∣V (�, �) ∣ℓ,m⟩ (3.27)

47

Quantum Rotations

where the rotational constant, B is given by B = ℏ
2/2I. It is clear that we must evaluate the

matrix elements of the potential. For the purposes of our calculation we choose a two-fold hindering
potential,

V (�, �) =
V2
2

(1− cos 2�) (3.28)

where V2 is the barrier height. We will find it helpful to express the potential in terms of the
spherical harmonics in order to calculate the matrix elements explicitly. Since

Y2,0 (�, �) =

√

5

4�

(

3

2
cos2 � − 1

2

)

, (3.29)

a little algebra allows us to re-write the potential as

V (�, �) =
2V2
3

−
√

16�

45
V2Y2,0 (�, �) . (3.30)

Now we can calculate the matrix elements for the potential, Vℓ,ℓ′,m,m′ .

Vℓ,ℓ′,m,m′ = ⟨Y ∗
ℓ′,m′ ∣2V2

3
−
√

16�

45
V2Y2,0 (�, �) ∣Yℓ,m⟩ (3.31)

=
2V2
3
�ℓ,ℓ′�m,m′ −

√

16�

45
V2⟨Yℓ′,m′ ∣Y2,0∣Yℓ,m⟩. (3.32)

The integral over three different spherical harmonics can be written in terms of the Wigner 3-j
symbol [15]. See appendix A for more details on the 3-j symbol and the IDL implementation.

⟨Yℓ1,m1
∣Yℓ2,m2

∣Yℓ3,m3
⟩ = (−1)

m1

∫ 2�

0

d�

∫ �

0

d�sin�Yℓ1,−m1
Yℓ2,m2

Yℓ3,m3
(3.33)

= (−1)m1

(

(2ℓ1 + 1) (2ℓ2 + 1) (2ℓ3 + 1)

4�

)1/2

× (3.34)

(

ℓ1 ℓ2 ℓ3
0 0 0

)(

ℓ1 ℓ2 ℓ3
−m1 m2 m3

)

,

where we have used the relationships

∫ 2�

0

d�

∫ �

0

d�sin�Yℓ1,m1
Yℓ2,m2

Yℓ3,m3
=

(

(2ℓ1 + 1) (2ℓ2 + 1) (2ℓ3 + 1)

4�

)1/2

× (3.35)

(

ℓ1 ℓ2 ℓ3
0 0 0

)(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

and Y ∗
ℓ,m = (−1)m Yℓ,−m. Using this we may write the matrix elements for the potential term in

the Hamiltonian as

Vℓ,ℓ′,m,m′ =
2V2
3
�ℓ,ℓ′�m,m′ −

(−1)
m′

√

16�

45
V2

(

5 (2ℓ′ + 1) (2ℓ+ 1)

4�

)1/2(
ℓ′ 2 ℓ
0 0 0

)(

ℓ′ 2 ℓ
−m′ 0 m

)

.

48

3.3 Hindered Dumbell Rotations

Collecting terms in the final Hamiltonian yields

Hℓ,ℓ′,m,m′ =

(

Bℓ (ℓ+ 1) +
2V2
3

)

�ℓ,ℓ′�m,m′ −

(−1)
m′

√

16�

45
V2

(

5 (2ℓ′ + 1) (2ℓ+ 1)

4�

)1/2(
ℓ′ 2 ℓ
0 0 0

)

×
(

ℓ′ 2 ℓ
−m′ 0 m

)

.

With this expression and the IDL function to calculate the Wigner 3-j symbol, wigner_threeJ,
we can construct the Hamiltonian Hℓ,ℓ′,m,m′ . However, because the Wigner 3-j symbol function
we’ve implemented in IDL is not a vectorized function, we are not able to take advantage of
the matrix operations that we did in the previous examples. We have to resort to a brute-
force approach when constructing the Hamiltonian. The implementation is shown in the code
DUMBELL_SOLVER.PRO where the eigenvalues and eigenvectors are computed for a particular value
of V2. In our implementation we must write the Hamiltonian as a square matrix (again, be-
cause the IDL eigensystem function LA_EIGENQL requires a square matrix) by including all of
the values for ℓ and m in each of the two dimensions. Specifically we compute the matrix el-
ements for ℓ = 0, 1, ⋅ ⋅ ⋅ , ℓmax; m = −ℓ,− (ℓ− 1) , ⋅ ⋅ ⋅ , 0, ⋅ ⋅ ⋅ , (ℓ− 1) , ℓ; ℓ′ = 0, 1, ⋅ ⋅ ⋅ , ℓmax; and
m′ = −ℓ′,− (ℓ′ − 1) , ⋅ ⋅ ⋅ , 0, ⋅ ⋅ ⋅ , (ℓ′ − 1) , ℓ′. For a two-dimensional matrix this means that the
length of each dimension will be

ℓmax
∑

ℓ=0

ℓ
∑

m=−ℓ

1 =

ℓmax
∑

ℓ=0

(2ℓ+ 1)

= 2

ℓmax
∑

ℓ=0

ℓ+

ℓmax
∑

ℓ=0

1

= ℓmax (ℓmax + 1) + (ℓmax + 1)

= (ℓmax + 1)
2

The IDL function that calculates the eigenvalues for a dumbell rotor is listed below. The interface
allows the user to specify the rotational constant, B. For a H2 molecule B = 7.35 meV. However
often we would like to view the the eigenvalue spectrum as a function of reduced units (units of
B). We can do this by setting B = 1 when invoking the function. The interface to this function
also allows the user to specify the barrier height, V2, and the maximum value for ℓ or ℓmax. The
default value for the maximum angular momentum quantum number is ℓmax = 5. Note that ℓ is
not a good quantum number when V2 ∕= 0.

function dumbell_solver, B = B, $

V2 = V2, $

LMAX = LMAX

compile_opt idl2,hidden

if n_elements(B) eq 0 then B = 7.35 ; rotational constant (meV)

if n_elements(V2) eq 0 then V2 = 0.0 ; hindering barrier for two-fold

; symmetric potential (meV)

if n_elements(LMAX) eq 0 then LMAX = 5

; Create the Hamiltonian

49

Quantum Rotations

nl = lmax+1 & hsize = nl*nl

l = indgen(lmax+1) & nl = n_elements(l)

m = -lmax+indgen(2*lmax+1) & nm = n_elements(m)

h2 = fltarr(hsize,hsize)

ix = 0L & iy = 0L

for j = 0,nl-1 do begin

m = -j+indgen(2*j+1)

for i = 0,2*j do begin

iy = 0

for jj = 0,nl-1 do begin

mm = -jj+indgen(2*jj+1)

for ii = 0,2*jj do begin

term1 = (B*l[j]*(l[j]+1)+2.*V2/3.)*ds_delta(l[j],l[jj])*ds_delta(m[i],mm[ii])

term20 = ((-1.)ˆmm[ii])*V2*sqrt(16.*!pi/45.)*$

(sqrt(5.*(2.*l[jj]+1.0)*(2.*l[j]+1.0)/(4.*!pi)))*$

wigner_threeJ(l[jj],2,l[j],0,0,0)*$

wigner_threeJ(l[jj],2,l[j],-mm[ii],0,m[i])

h2[ix,iy] = term1-term20

iy++

endfor

endfor

ix++

endfor

endfor

; Find the eigenvalues of the Hamiltonian

evalso = la_eigenql(h2,/double)

esort = sort(evalso)

evalso = evalso[esort]

return,evalso

end

The procedure below, DUMBELL1, creates a plot of the eigenvalue spectrum for a broad range
of values, V2, as shown in the figure.

pro dumbell1

; Compute the eigenvalues for a range of barrier heights

nv = 20

v2 = linspace(0.0,20.0,nv)

for j = 0,nv-1 do begin

evals = dumbell_solver(B = 1.0,v2 = v2[j])

if j eq 0 then eout = evals else eout = [[eout],[evals]]

endfor

es = size(eout,/dimension)

n = es[0]

eout = eout[0:n-1,*]

emax = max(eout,min = emin)

plot,v2,eout[0,*],yrange = [0.0,20],/ystyle,psym = 0, $

50

3.3 Hindered Dumbell Rotations

Figure 3.5: Eigenvalue spectra for a dumbell rotor as a function of barrier height V2. The
calculation was done for 10 values of V2 between 0 and 20 with a rotational constant B = 1 and
ℓmax = 5.

color = fsc_color(’black’),background = fsc_color(’white’),$

title = ’!6Eigenvalues’,xtitle = ’!6V!d2!n (B)’,$

ytitle = ’!6Eigenvalues/B’,/nodata,charsize = 1.5

for j = 0,n-1 do oplot,v2,eout[j,*],psym = 0,thick = 2.0,$

color = fsc_color(’red’)

end

Ex. 16 — Verify that the algorithm produces the expected free-rotor eigenvalues. Specifically for
V2 = 0, calculate the eigenvalues and show that they follow E/B = ℓ (ℓ+ 1) for ℓ = 0, 1, ⋅ ⋅ ⋅ , ℓmax.

* Ex. 17 — For V2 = 10B by what percentage does the 5tℎ eigenvalue change when the eigen-
values are calculated for a Hamiltonian with ℓmax = 5 compared with a Hamiltonian calculated
for ℓmax = 6? How much does the 17tℎ eigenvalue change? Based on your result, should we be
using more terms in calculating the Hamiltonian? Hint: remember to set B = 1 in order to ensure
that you are calculating eigenvalues in units of B.

*** Ex. 18 — Using the basis of spherical harmonics, Yℓ,m (�, �), determine the matrix elements
Hℓ,ℓ′,m,m′ corresponding to a Hamiltonian with a four-fold symmetric potential energy, V (�) =
V4

2 (1− cos 4�). Hint: first express the potential in terms of the spherical harmonics. Plot the
eigenvalues for a range of V4: 0 ≤ V4 ≤ 20.

51

Quantum Rotations

52

Chapter 4

Quantum Dynamics in One
Dimension

Until this chapter our discussions have focused on solving the time-independent Schrödinger equa-
tion. We described dynamic phenomena as resulting from an initial superposition of eigenstates.
The time-evolution operator then provides the time dependence for the evolving state. In real world

applications such as particle scattering, the particles are often represented as having a location and
spread. Thus they have a finite extent and can be characterized by a peak position. The Gaussian
wavepacket is a waveform that matches this description. In many cases it would be preferable
to solve the time-dependent Schrödinger equation for a potential and specify a general form for
the initial state, such as a propagating Gaussian wavepacket. In this chapter we will describe
just such a method that allows the user to specify such a particle-like initial state, a propagating
Gaussian wavepacket, and compute how this wavepacket interacts with a user-defined potential in
time. Many observable characteristics of quantum scattering will be evident from our calculations,
including dispersion, tunneling, and virtual or metastable states.

4.1 The Goldberg-Schey-Schwartz Algorithm

In 1967 Goldberg, Schey, and Schwartz published a paper in the American Journal of Physics that
described an algorithm1 to compute the time-development of a general wavepacket scattering from
a one-dimensional potential.[9] This seminal paper spawned numerous follow-on papers and even
a set of film loops depicting scattering phenomena.[16] It is still a very highly cited article. As an
aside, one of the fascinating aspects of this paper is that it described the state-of-the-art in 1967
for converting the computer output on a cathode-ray tube to film. It is interesting to note some of
the comments made describing the challenges that the authors encountered in doing this transfer.

The reader will note occasional breaks or discontinuities at various points in some of

these pictures. This effect is due to an evidently inherent malfunction of the equipment

involved in rendering the machine calculations into graphical form. At the present time

there appears to be no simple way to avoid this problem; but, fortunately, the discon-

tinuities, while annoying, by no means destroy the effect of the film. This situation

1Hereafter referred to as the GSS algorithm

53

Quantum Dynamics in One Dimension

emphasizes the fact that the use of computers to illustrate time development in physical

systems by motion pictures is still in a preliminary, if no longer rudimentary stage.[9]

Not only did the film loops find great popularity in the classroom for a whole generation of physics
students, but the computational technique described in that article is still of great value today.
Moreover, this algorithm can be implemented in a straightforward way into IDL and, using a
modern desktop computer, allows extremely rapid calculation of the dynamics of a wavepacket
scattering from a potential.

4.1.1 Development of the GSS Algorithm

We will follow closely the algorithm development from [9]. We start with choosing a system of
units in which ℏ = 2m = 1 so that the Schrödinger equation is

− ∂2Ψ

∂X2
+Θ(X)Ψ(X,T) = i

∂Ψ

∂T
, (4.1)

where Ψ (X,T) = ⟨X ∣Ψ⟩ (T). We replaced the physical variables x with X , t with T , and V with
Θ to distinguish between the two forms of the Schrödinger equation.

Next we discretize X in (J + 1) points equally-spaced by � and discretize T in (N + 1)
equally-spaced by �. The action of the Hamiltonian on the discretized wavefunction, Ψn

j , is

HΨn
j = − 1

�2
(

Ψn
j+1 +Ψn

j−1 − 2Ψn
j

)

+ΘjΨ
n
j , (4.2)

which we recall from our earlier discussion of the discrete variable approximation in chapter 2. We
apply the time-development operator to the wavefunction in order to propagate our solution in
time:

Ψn+1
j = e−i�HΨn

j . (4.3)

For small time steps � we might guess that we can make a small-argument expansion of the
exponential operator and truncate it after the first-order term,

Ψn+1
j ≃ (1− i�H)Ψn

j . (4.4)

Unfortunately the approximation is not unitary and probability will not be conserved. We solve
this issue by using the Cayley approximation to the exponential operator:

ei�H ≃ 1− i�H/2

1 + i�H/2
, (4.5)

which is unitary. With this approximation we have

Ψn+1
j ≃ 1− i�H/2

1 + i�H/2
Ψn

j , (4.6)

or
(1 + i�H/2)Ψn+1

j ≃ (1− i�H/2)Ψn
j . (4.7)

From now on we will replace the ≃ with =.

When we multiply through we get

Ψn+1
j +

i�

2
HΨn+1

j = Ψn
j − i�

2
HΨn

j (4.8)

54

4.1 The Goldberg-Schey-Schwartz Algorithm

which, upon factoring in the action of the Hamiltonian, can be expanded out

Ψn+1
j +

i�

2
ΘjΨ

n+1
j − i�

2�2
(

Ψn+1
j+1 +Ψn+1

j−1 − 2Ψn+1
j

)

= Ψn
j − i�

2
ΘjΨ

n
j +

i�

2�2
(

Ψn
j+1 +Ψn

j−1 − 2Ψn
j

)

.

(4.9)
Letting � = 2�2/� and collecting terms yields

Ψn+1
j+1 +

(

i�− �2Θj − 2
)

Ψn+1
j +Ψn+1

j−1 = −Ψn
j+1 +

(

i�+ �2Θj + 2
)

Ψn
j −Ψn

j−1. (4.10)

This equation is an implicit equation, meaning that Ψn
j is not given only in terms of Ψn−1

j .
This means that we must solve this equation using other means. Specifically we will use a two-sweep
method as it is described in [9]. To begin, we make the following assignments:

Ωn
j ≡ −Ψn

j+1 +
(

i�+ �2Θj + 2
)

Ψn
j −Ψn

j−1 (4.11)

and
Ψn+1

j+1 = enjΨ
n+1
j + fn

j . (4.12)

We substitute equations 4.11 and 4.12 into equation 4.10 which yields

ejnΨ
n+1
j + fn

j +
(

i�− �2Θj − 2
)

Ψn+1
j +Ψn+1

j−1 = Ωn
j . (4.13)

Collecting terms gives

Ψn+1
j =

(

2 + �2Θj − i�− enj
)−1 (

fn
j − Ωn

j

)

+
(

2 + �2Θj − i�− enj
)−1

Ψn+1
j−1 . (4.14)

Noting that we can rewrite equation 4.12 by decrementing the index j to get Ψn+1
j = en+1

j−1Ψ
n+1
j−1 +

fn
j−1 and comparing this to the previous equation we see that

enj−1 =
(

2 + �2Θj − i�− enj
)−1

(4.15)

which can be rewritten as
enj = 2 + �2Θj − i�− 1/enj−1. (4.16)

Note that equation 4.16 suggests that enj is time-independent so that we can drop the superscript
n. Also, from comparing the equation 4.12 to equation 4.14 we see that

fn
j−1 =

(

fn
j − Ωn

j

)

ej−1 (4.17)

or
fn
j = Ωn

j + fn
j−1/ej−1. (4.18)

Equations 4.16 and 4.18 are the recursion relations that we’ll need to solve the Schrödinger equation
numerically but first we’ll need to impose the boundary conditions to get the starting conditions
for the recursions.

Since we are solving the Schrödinger equation in a box, we impose the boundary conditions
at the ends Ψ(0, t) = Ψ(L, t) = 0 where the box is defined over 0 ≤ x ≤ L. This means that
Ψn

0 = Ψn
J = 0 for all n. We can rewrite equation 4.13 as

Ψn+1
2 =

(

2 + �2Θ1 − i�
)

Ψn+1
1 +Ωn

1 (4.19)

and then compare with equation 4.12 to yield

e1 = 2 + �2Θ1 − i� (4.20)

55

Quantum Dynamics in One Dimension

and

fn
1 = Ωn

1 . (4.21)

With the boundary conditions 4.20 and 4.21 and the recursion relations 4.16 and 4.18 we can
calculate ej for all j and fn

j for all j and n.

Next, substituting j = J − 1 into equation 4.12 and solving for Ψn
J−1 we get Ψn

J−1 =
−fn

J−1/eJ . We have all of the information on the right-hand side so that we can calculate Ψn
J−1.

We can get the next value down the line (i.e. j = J − 2) simply. Solving equation 4.12 for Ψn+1
j

yields Ψn+1
j =

(

Ψn+1
j+1 − fn

j

)

/ej . Substituting j = J − 2 into that expression yields the next value

down the line, Ψn+1
J−2 =

(

Ψn+1
J−1 − fn

J−2

)

/eJ−2, for the wavefunction. Since we just calculated Ψn
J−1

in the previous step, we have enough information on the right hand side of this expression to
calculate Ψn

J−2. We can continue this process on down the line until we reach Ψn
1 . Note that

Ψn
0 = 0 for all n due to the boundary condition.

Though this algorithm is not as straightforward as the DVA in one dimension, it allows one
to compute the time-evolution of a wavefunction fairly rapidly. We will see this through numerous
examples in the remaining sections of the chapter.

4.1.2 Implementation

The GSS algorithm is not as amenable to matrix or vector operations as the DVA algorithm.
Nevertheless we find some economy in our implementation using some of IDL’s built-in capabilities.
The function that performs the time-evolution of the wavefunction given a potential is called
TDSE_SOLVER and it is listed below. As the algorithm described in the previous section requires,
we define the values for ej for all time and keep that out of the loop over time. Where we find the
most economy in implementation is in the calculation of Ωn

j . However the recursions, particularly
those that require that we step down the chain of spatial points from high to low, do not readily
admit a vectorized operation. For those we must use a loop. Fortunately the loops are relatively
quick to execute.

function tdse_solver,x,t,wf_init,v

compile_opt idl2,hidden

!except = 0

Y = wf_init[*,0]

nx = n_elements(x) & nt = n_elements(t)

dx = (x[1] - x[0]) & dt = t[1] - t[0]

lambda = complex(2.*(dxˆ2)/dt,0.0)

i = complex(0.0,1.0) ; define the imaginary unit

; remember not to use i as an array index or loop variable!

; Normalize the initial wavefunction

c = int_tabulated(x,(abs(Y))ˆ2)

Y = Y/sqrt(c)

psi = complexarr(nx,nt) & psi[*,0] = Y

e = complexarr(nx) & omega = complexarr(nx,nt) & f = complexarr(nx,nt)

; Use the recursion relations to find the t = 0 parameters

e[1] = 2.+((dx)ˆ2)*v[1]-i*lambda

for j = 2,nx-2 do e[j] = 2.+(dxˆ2)*v[j,0]-i*lambda-(1./e[j-1])

omega[1,0] = -Y[2] + (i*lambda+(dxˆ2)*v[1]+2.)*Y[1]-Y[0]

56

4.1 The Goldberg-Schey-Schwartz Algorithm

f[1,0] = omega[1,0]

; Now evolve the wavefunction in time...

for it = 1,nt-1 do begin

omega[2:nx-2,it-1] = -psi[3:nx-1,it-1] + $

(i*lambda+(dxˆ2)*v[2:nx-2]+2.0)*psi[2:nx-2,it-1] - $

psi[1:nx-3,it-1]

for j = 2,nx-2 do f[j,it-1] = omega[j,it-1] + f[j-1,it-1] / e[j-1]

psi[nx-2,1] = -f[nx-2,it-1] / e[nx-2]

for j = 3,nx-2 do psi[nx-j,it] = (psi[nx-j+1,it] - f[nx-j,it-1]) / e[nx-j]

endfor

return,psi

end

The function TDSE_SOLVER requires four input parameters and returns a two-dimensional
complex array. The four input parameters include x, an equally-spaced vector of positions (of length
nx); t, an equally-spaced vector of times (length nt); wf_init a complex array that contains the
initial (t = 0) wavefunction (length nx); and v, the potential defined at each value of x. The
function returns a complex array psi (nx×nt).

4.1.3 Stability and Selection of Parameters

It is important to choose the parameters in the calculation such that the results are accurate.
The accuracy of the GSS algorithm depends on the mesh parameters (e.g. the intervals in space
and time, the magnitude of the potential, and the magnitude of the wavevector, k0). We will not
reproduce the reasoning that leads to the criteria that ensures accuracy but rather list them here
and refer the reader to the discussion in the original GSS paper.[9]

The criteria are the following:

(km�)
2
/12 << 1, (4.22)

Vmax�
2/12 << 1, (4.23)

N�3
(

k6m − k60
)

/12 << 1. (4.24)

In these expressions, km is the maximum momentum component of consequence in the wavefunc-
tion, k0 is the incident wavevector, and Vmax is the maximum value of the potential. In the
computations that follow in this book, we ensure that the conditions above hold. In practice we
ensure that the left-hand sides of the three conditions above are less than or equal to 0.1.

A short function named TDSE_CHECK_PARAMS has been written to check that the parameters
that you’ve selected meet the conditions described here. It uses the function MOMENTUM_TRANSFORM

described in chapter 1. The inputs are the spatial grid values x, the time values t, the initial
wavefunction wf, and the potential v. The function returns a logical 1 if the parameters satisfy
the criteria and a 0 if they do not. The function is listed below.

function tdse_check_params,x,t,wf,v

compile_opt idl2,hidden

; This function determines whether the computation

57

Quantum Dynamics in One Dimension

; parameters will likely result in a stable and accurate

; result. The criteria are based on that specified in

; GSS (1967).

nx = n_elements(x) & nt = n_elements(t)

dx = x[1] - x[0] & dt = t[1] - t[0]

; Transform the wavefunction to get the peak momentum component

str = momentum_transform(x,t,wf)

phi_k = str.phi_k & k = str.k

kenv = abs(phi_k)

kprob = kenvˆ2

; Find the peak in the momentum distribution, ko

peak = max(kprob,peak_index)

ko = k[peak_index]

; Find the highest momentum component (absolute value)

; Make the determination based on the highest

; momentum component with greater than 1% of the

; peak intensity.

kindex = where(kprob ge 0.05*peak)

kselect = k[kindex] & kprobselect = kprob[kindex]

lambda = 2.*(dxˆ2)/dt

km = max(abs(kselect))

vmax = max(v)

val1 = (km*dx)ˆ2/12.0

val2 = vmax*(dxˆ2)/12.0

val3 = nt*(dtˆ3)*(kmˆ6-koˆ6)/12.0

val4 = km*dx/!pi

bound = 0.1

retval = (val1 lt bound) and (val2 lt bound) and (val3 lt bound) and (val4 lt bound)

return,retval

end

4.1.4 Getting the Units Right with the GSS Algorithm

We remind ourselves that the algorithm presented here solves the Schrödinger equation with units
where ℏ = 2m = 1. It is a straightforward matter of scaling to determine the proper physical units
corresponding to those used in the computations. We begin with the time-dependent Schrödinger
equation:

− ℏ
2

2m

∂2

∂x2
+ V (x) (x, t) = iℏ

∂

∂t
. (4.25)

Next we assume the following scaling: T = (�/ℏ)t and x = �X . The chain rule applied to those
scalings yield

∂

∂t
=
�

ℏ

∂

∂T
(4.26)

and
∂2

∂x2
=

1

�2

∂

∂X2
. (4.27)

58

4.2 Scattering from a High Step Potential

Substituting these into the time-dependent Schrödinger equation, equation 4.25 yields the scale-free
Schrödinger equation

− ∂2Ψ

∂X2
+Θ(X)Ψ(X,T) = i

∂Ψ

∂T
. (4.28)

Using the scaling equations with equation 4.28 and comparing with 4.25 we find that

ℏ
2

2m�2�
= 1 (4.29)

so that � = ℏ√
2m�

and Θ = V/�. This leads finally to the three scaling relationships:

x =

(

ℏ√
2m�

)

X

t =

(

ℏ

�

)

T

V = �Θ

A concrete example might help. Let’s consider a particle of mass 1u and that we scale
the potential energy such that � = 1 so that Θmax = 10 corresponds to Vmax = 10 meV. Let’s
further consider that our box in which we are solving the Schrödinger equation using TDSE_SOLVER

is defined over −30 ≤ X ≤ 30. Noting that ℏc = 1973× 103meV⋅ Å we find that � = 1.45Å per X
unit. Therefore our box is really defined over −43.5 ≤ x(Å) ≤ 43.5. The time scale is determined
by ℏ/� which, using ℏ = 0.6528 meV⋅ps, implies that a change in one unit of T corresponds to a
change of 0.6528 ps.

* Ex. 19 — Discuss the physical units of energy in terms of the scaling of the Schrödinger equa-
tion.

4.2 Scattering from a High Step Potential

Our first application of the GSS algorithm is to investigate the scattering of a propagating Gaussian
wavepacket from a high step barrier. We define our computation box over −30 ≤ X ≤ 30 for 1000
equally-spaced locations and the time over 0 ≤ T ≤ 5 for 1000 equally-spaced times. The incident
wavefunction is a Gaussian wavepacket of the functional form

⟨x∣Ψ⟩ (t) = Ce−
1

2 (
x−x0

�)
2

eik0x, (4.30)

where C is a normalization constant, k0 is the propagation constant, and x0 is the center of
the wavepacket at t = 0. There are a few points worth mentioning here. First, TDSE_SOLVER
performs the normalization of the incident wavefunction so we can set C = 1 in our computation
without a problem. Also, the propagation factor, eik0x, causes a right-moving wavepacket whereas
e−ik0x would be a left-moving wavepacket. In our calculation we make the following assignments:
x0 = −15, k0 = 3,and � = 2. The code that computes the time-evolution of this wavepacket and
plots the animation is shown below in TDSE_SOLVER_EX1. Six frames from the animated sequence
are shown in figure 4.1. We note, as we did in chapter 2, that the magnitude of the amplitude of
the probability density in the animation and in the six-frame sequence is meaningless compared
with the magnitude of the potential. We have simply scaled the probability density so that it
appears on the same scale as the potential. This is all done in the routine ANIMATE_PROBABILITY.

59

Quantum Dynamics in One Dimension

pro tdse_solver_ex1

; Visualization of a Gaussian wavepacket colliding

; with a high step barrier.

; Define the space-time grid

nx = 1000 & x = linspace(-30.0,10.0,nx)

nt = 700 & t = linspace(0.0,5.0,nt)

dx = x[1] - x[0]

i = complex(0.0,1.0) ; definition of the imaginary unit

; Note that we won’t worry about normalizing this wavefunction

; because TDSE_SOLVER will take care of that for us.

ko = 3.0

wf_init = exp(-0.5*((x+15.0)/2.0)ˆ2)*exp(i*ko*x)

; Define the potential as a barrier that is 20 units

; tall and starts at x=0.

v = fltarr(nx)

indhi = where(x gt 0) & v[indhi] = 20.0

ok = tdse_check_params(x,t,wf_init,v)

if ˜ok then return

psi = tdse_solver(x,t,wf_init,v)

ret = animate_probability(x,t,v,psi,offset = tdse_calc_energy(x,wf_init))

end

The classical analog of this quantum scattering event is a ball bouncing off of a hard wall.
The quantum effects of this collision are apparent in two striking ways. First the wavepacket
spreads before it starts interacting with the step. This can be seen in the two frames before the
collision. This is also clear in the structure of the wavepacket after the collision seen in the final
two frames. The other quantum effect is the interference of the wavepacket with itself during the
interaction with the wall. The oscillations are due to the superposition of the right-moving and
left-moving components of the wavepacket interfering with each other during the interaction.

Another instructive way to view this collision is by representing the wavepacket by pha-
sors, as described in chapter 1. Phasors, arrows whose magnitude corresponds to the magnitude
of a complex quantity and whose direction depends on the magnitude of the real and imaginary
components of that complex number, are an alternative representation of the dynamics of a quan-
tum scattering event and can emphasize different aspects of the collision process. In order to see
how a wavepacket looks in its phasor form, change the line of code in TDSE_SOLVER_EX1 from
ret = animate_probability(x,t,v,psi) to ret = animate_phasors(x,t,v,psi). If the ani-
mation runs too quickly, you can set a keyword wait to a small value in the ANIMATE_PHASORS func-
tion which will slow it down. For example, try ret = animate_phasors(x,t,v,psi,wait=0.02).
Note that not all of the spatial points in the grid for x have a phasor associated with it. The reason
for not including all of the phasors in the animated display is that it would be too cluttered. Only
every third phasor is drawn. In addition, only phasors whose magnitude exceeds a certain value
are drawn. So as the wavepacket propagates, you will see the trail of phasors track the motion of
the center of the wavepacket. Figure 4.2 shows various aspects of the animated sequence.

When a continuous wave is represented by phasors, the effects of constructive interference
are striking. For a wavepacket colliding with a high step barrier, there is a time period over which
the constructive interference is apparent via adjacent phasors that are nearly parallel because they
have nearly the same phase. This is evident in figure 4.2 which shows more time steps than figure

60

4.2 Scattering from a High Step Potential

Figure 4.1: Scattering of a Gaussian wavepacket from a high step. The parameters used in this
computation were J = 1000, N = 700, x0 = −15, k0 = 3, � = 2, −30 ≤ X ≤ 10, and 0 ≤ T ≤ 5.
The probability density has been offset vertically by its kinetic energy.

61

Quantum Dynamics in One Dimension

4.1 for the time in which the wavepacket is ”in contact” with the wall.

Another interesting way to view the collision of a wavepacket with a step barrier is in
momentum space. Recall that the momentum of a particle is related to the wavevector of that
particle through the relationship p = ℏk. The probability density in wavevector space is given
by ∣�(k, t)∣2 where �(k, t) is related to the position-space wavefunction (x, t) through a Fourier
transformation in space. The time-evolution of the probability density in k-space is shown in figure
4.3. Most aspects that you see in the momentum distribution should make qualitative sense. For
instance, the incident wavepacket initially has a momentum distribution centered about k = k0 = 3.
During the collision (i.e. while the wavepacket is in contact with the barrier), a peak begins to
build up centered about k = −3 while the intensity at k = 3 starts to diminish. Finally, after the
collision is complete, only a peak centered about k = −3 remains.

Ex. 20 — If the step barrier height with a value of 20 corresponds to 20 meV for the computation
displayed in figure 4.1 and the particle has mass of 1u, determine the correct physical units for the
simulation. Specifically, how big is the computational box and at what time does the calculation
end?

Ex. 21 — Create an animated sequence for a collision of the same wavepacket with a barrier
that is 5 units high. What are the qualitative differences you observe with the collision shown in
figure 4.1.

Ex. 22 — Create an animated sequence for a collision of a Lorentzian wavepacket (with propa-
gation constant k0 = 3) with a barrier that is 20 units high. Note that the Lorentzian wavepacket
takes the functional form

⟨x∣Ψ⟩ = C
eik0x

(x− x0)
2
+ Γ2

(4.31)

where C is a normalization factor, Γ is the half-width at half-maximum, x0 is the center of the
wavepacket, and k0 is the initial wavevector. What are any qualitative differences you see between
a propagating Gaussian wavepacket and a propagating Lorentzian wavepacket interacting with the
step barrier?

4.3 Scattering from a Square Barrier

If a wavepacket collides with a square barrier, it is possible that part of the wavepacket will
penetrate into the barrier and even be found on the far side of the barrier. The conditions for this
penetration, or tunneling through the barrier, depend on the energy of the incident wavepacket,
the height of the barrier, and the width of the barrier.

Let’s first consider an incident wavepacket with parameters identical to those in the previous
section. That is, propagating with a propagation constant k0 = 3 and with a Gaussian standard
deviation � = 2. For a potential barrier with height Θmax = 10 and a width of 3, the results of the
scattering event are computed with TDSE_SOLVER_EX2 and displayed in figure 4.4. From this figure
we see a number of features that are indicative of the quantum nature of the process. First during
the collision process with the left-most wall, there are numerous oscillations due to the interference
of the wavefunction’s incident and reflected components. Moreover there is clearly a component
that is transmitted through the entire barrier. Perhaps one of the most interesting aspects of the
scattering event is that there is a component that appears to be trapped within the barrier itself.
This is a longer-lived component that still has a substantial amplitude even in the last frame of the
animated sequence. This trapped component is a result of waves reflecting back and forth within

62

4.3 Scattering from a Square Barrier

Figure 4.2: Same as figure 4.1 but wavefunction represented as a phasor and only shown over the
range 2 ≤ T ≤ 3 to emphasize the period of time in which the wavepacket interacts with the wall.
Note that the phasors are moving largely in-phase during these frames. This manifests itself as
the many phasors being parallel and moving synchronously which is better seen in the animation.
The phasors have been offset vertically by the kinetic energy of the wavepacket.

63

Quantum Dynamics in One Dimension

Figure 4.3: Same as figure 4.1 but for the probability density in momentum space.

64

4.4 Scattering from a Square Well

the walls of the barrier that sum constructively. Eventually this component will die out but it is
a resonant or metastable excitation of the barrier.

pro tdse_solver_ex2

; Visualization of a Gaussian wavepacket colliding

; with a low square barrier.

; Define the space-time grid

nx = 1000 & x = linspace(-30.0,30.0,nx)

nt = 700 & t = linspace(0.0,3.0,nt)

i = complex(0.0,1.0) ; definition of the imaginary unit

; Note that we won’t worry about normalizing this wavefunction

; because TDSE_SOLVER will take care of that for us.

wf_init = exp(-0.5*((x+10.0)/2.0)ˆ2)*exp(i*3.*x)

v = fltarr(nx)

indhi = where((x gt -1.5) and (x le 1.5)) & v[indhi] = 10.0

ok = tdse_check_params(x,t,wf_init,v)

if ˜ok then return

psi = tdse_solver(x,t,wf_init,v)

ret = animate_probability(x,t,v,psi,offset = tdse_calc_energy(x,wf_init))

end

** Ex. 23 — Compute the transmission of the wavepacket on a square barrier as a function of
barrier width for fixed height of Θmax = 10. Plot the transmission as a function of barrier width
Γ for widths in the following interval: 0.5 ≤ Γ ≤ 5.0.

** Ex. 24 — Compute the transmission of the wavepacket on a square barrier as a function of
barrier height for fixed width of Γ = 3.0. Plot the transmission as a function of barrier height
Θmax for heights in the following interval: 5.0 ≤ Θmax ≤ 30.0.

4.4 Scattering from a Square Well

We saw in the previous section that it is possible for a wavepacket to penetrate through a barrier
if the barrier is thin enough and/or short enough. In that example our intuition from classical
mechanics would lead us to expect that there would only be a reflected component. Nevertheless
we found that the wavepacket was also capable of penetrating through the barrier. Now we will
consider a wavepacket scattering from a square well. In this case our classical intuition would lead
us to expect that the wavepacket will transmit entirely across the well. Once again our classical
intuition fails us.

The program that illustrates this scattering event is listed in TDSE_SOLVER_EX3 below.

pro tdse_solver_ex3

; Visualization of a Gaussian wavepacket colliding

; with square well.

; Define the space-time grid

65

Quantum Dynamics in One Dimension

Figure 4.4: Scattering of a Gaussian wavepacket from a square barrier. The parameters used
in this computation were J = 1000, N = 700, x0 = −10, k0 = 3, � = 2, −30 ≤ X ≤ 30, and
0 ≤ T ≤ 3. The probability density has been offset vertically by its kinetic energy.

66

4.4 Scattering from a Square Well

nx = 1000 & x = linspace(-30.0,30.0,nx)

nt = 1000 & t = linspace(0.0,3.0,nt)

i = complex(0.0,1.0)

wf_init = exp(-0.5*((x+10.0)/2.0)ˆ2)*exp(i*3.*x)

v = fltarr(nx)

w = 3.0

indhi = where((x gt -0.5*w) and (x le 0.5*w)) & v[indhi] = -50.0

ok = tdse_check_params(x,t,wf_init,v)

if ˜ok then return

psi = tdse_solver(x,t,wf_init,v)

xr = [-20.0,20.0]

xind = where((x ge xr[0]) and (x le xr[1]))

ret = animate_probability(x[xind],t,v[xind],psi[xind,*],$

offset = tdse_calc_energy(x,wf_init))

end

We can see from figure 4.5 that the wavepacket interacts with the square well in a complicated
way. For instance, as the wavepacket hits the leading edge of the well, oscillations build up as a
result of the interference of reflected wave components and the incident wave. Still, part of the
wave moves into the region of negative potential where oscillations build up. A standing wave
pattern builds up for a short time within the well as a result of right-moving and left-moving wave
components interfering with each other. These left-moving and right-moving waves are the result
of reflection from the edges of the well. Finally we can see that once the excitation within the well
has decayed away, the only remaining components are a right-moving transmitted wavepacket and
a left-moving reflected wavepacket. Both wavepackets have nearly the same amplitude and width.

The scattering of a wavepacket from a square well is also interesting to view in momentum
space. A sequence of frames from the scattering event is shown in figure 4.6. Note that there is a
great deal more structure in ∣�(k, t)∣2 during the excitation of the mode in the well as compared
to the interaction of a wavepacket with a high step barrier. One specific aspect to observe is found
in the two panels corresponding to T=0.8 and T=1.2 in figures 4.5 and 4.6. The standing wave of
high-frequency oscillations in the well region seen in the two frames from the position-space plots
manifest themselves in the momentum-space plots at the same time as two satellite peaks centered
about k0 ≃ ±7.5. We should expect there to be symmetric peaks in momentum space because it
is a standing wave phenomenon that is constructed of a left-moving and right-moving plane wave
pair.

** Ex. 25 — Compute the transmission of the wavepacket on a square well as a function of
barrier width for fixed depth of Θmin = −50. Plot the transmission as a function of barrier width
Γ for widths in the following interval: 0.5 ≤ Γ ≤ 5.0.

** Ex. 26 — Compute the transmission of the wavepacket on a square barrier as a function of
barrier depth for fixed width of Γ = 3.0. Plot the transmission as a function of barrier height Θmin

for heights in the following interval: −50.0 ≤ Θmin ≤ −5.0.

67

Quantum Dynamics in One Dimension

Figure 4.5: Scattering of a Gaussian wavepacket from a square well. The parameters used in this
computation were J = 1000, N = 700, x0 = −7, k0 = 3, � = 2, −30 ≤ X ≤ 30, and 0 ≤ T ≤ 2.
The probability density has been offset vertically by its kinetic energy.

68

4.4 Scattering from a Square Well

Figure 4.6: Same as figure 4.5 but for the probability density in momentum space.

69

Quantum Dynamics in One Dimension

4.5 Scattering from a Periodic Potential: Bragg’s Law

One of the basic phenomena exploited in the field of crystallography, the study of the atomic-
scale structure of materials, is diffraction. Beams of neutrons, x-rays, and electrons are used to
scatter from solids and the wave-like behavior of these particles results in interference intensity
patterns in the detectors. These interference patterns arise from Bragg’s law which is well-known to
crystallographers. The basic phenomenon is that there are certain wavelengths � of particles in the
incident beam (and wavevectors k since k = 2�/�) for which scattering from a periodic structure
results diffraction while other wavelengths result in partial transmission into the structure. We
can model a one-dimensional ”crystal” structure by the one-dimensional potential

V (x) = V0 sin (Qx) (4.32)

where Q is called the reciprocal lattice vector for the ”crystal”. We can model our incident
particle beam by a Gaussian wavepacket with incident wavevector, k0. The result is worked out in
numerous textbooks (see [17] for instance) but the result, the Bragg condition for diffraction by a
one-dimensional ”crystal”, is given by

k0 =
Q

2
. (4.33)

Bragg’s law can be illustrated through a simple animation. The code TDSE_SOLVER_EX4 is
the implementation of this scattering event and the sequence is shown in figure 4.7. The case where
there is partial transmission is shown in figure 4.8. It is particularly interesting to see from figure
4.7 that the wavepacket appears to penetrate almost 5 Å into the ”crystal” before reflecting out
of it.

pro tdse_solver_ex4

; Visualization of a Gaussian wavepacket scattering

; from a periodic potential.

; Define the space-time grid

nx = 1000 & x = linspace(-20.0,20.0,nx)

nt = 1000 & t = linspace(0.0,4.5,nt)

i = complex(0.0,1.0)

k = 2.0

wf_init = exp(-0.5*((x+5.0)/3.0)ˆ2)*exp(i*k*x)

energy = tdse_calc_energy(x,wf_init)

Q = 4.0 & vo = 4.2 & ncycles = 15.0 & L = 2.0*!pi*ncycles/Q

ok = where((x ge 0) and (x le L))

v = fltarr(nx) & v[ok] = vo*sin(Q*x[ok])

ok = tdse_check_params(x,t,wf_init,v)

if ˜ok then return

psi = tdse_solver(x,t,wf_init,v)

ret = animate_probability(x,t,v,psi,offset = energy)

end

Ex. 27 — You observed that the wavepacket penetrates a small distance into the one-dimensional
”crystal” even when the Bragg condition for reflection is satisfied. How does this penetration depth
vary with the width of the wavepacket? (A qualitative answer is sufficient.)

70

4.5 Scattering from a Periodic Potential: Bragg’s Law

Figure 4.7: Scattering of a Gaussian wavepacket from a periodic potential V (x) = 4.2 sin(4x).
The parameters used in this computation were J = 1000, N = 1000, x0 = −5, k0 = 2, � = 3,
−20 ≤ X ≤ 20, and 0 ≤ T ≤ 4.5. The probability density has been offset vertically by its kinetic
energy.

71

Quantum Dynamics in One Dimension

Figure 4.8: Scattering of a Gaussian wavepacket from a periodic potential V (x) = 9.5 sin(4x).
The parameters used in this computation were J = 1000, N = 1000, x0 = −5, k0 = 3, � = 3,
−20 ≤ X ≤ 20, and 0 ≤ T ≤ 3. The probability density has been offset vertically by its kinetic
energy.

72

4.6 Scattering from a Well with a Lip: Metastable/Virtual States

4.6 Scattering from a Well with a Lip: Metastable/Virtual
States

When a wavepacket scatters from a square well, for certain values of the incident wavevector, a
short-lived bound state of the well can be excited. This is known as a metastable or virtual state.
If instead the well is surrounded by a thin barrier, then it is possible for an even longer lived state
to be excited within the well region. There are specific conditions that must be met related to
the wavelength content in the wavepacket and the width of the potential. If a ”lip” exists on the
well–as the barrier–and the kinetic energy of the wavepacket is just a bit smaller than the height of
the lip, then a standing wave in the well can occur. A wavepacket can tunnel through the lip and
part of it can get trapped in the well—bouncing between the insides of the lip causes a buildup
of reflected waves and a long lived standing wave. In order to see this, consider a potential well
with a half Gaussian barrier on either side of the well. This can be represented by the following
function:

V (x) =

⎧

⎨

⎩

Hexp

(

− 1
2

(

x+W/2
r

)2
)

, x ≤ −W/2
−V0, −W/2 ≤ x ≤W/2

Hexp

(

− 1
2

(

x−W/2
r

)2
)

, x ≥W/2

(4.34)

where H is the amplitude of the Gaussian barrier, V0 is the depth of the well, W is the width of
the well, and r is the thickness (standard deviation) of the Gaussian barrier. In order to obtain a
long-lived state, we need to try to set up a standing wave within the well. To do this we can, as a
first approximation, match an integer multiple of the wavepacket’s propagation wavelength, N�,
to the well width, W , so that an integer number of standing waves fit into the well. In other words,
we excite an eigenstate of the well. Since the well has a width W , the eigenstate’s wavevector must
satisfy kW = 2N�. This is the resonant matching condition. If we select k = 3 and N = 3, we
obtain W = 2�. These are the values we use in the computations described below.

The result of sending a Gaussian wavepacket at the well is shown in figure 4.10. As shown
in that sequence, the wavefunction in the well region starts to build up in intensity when the
wavepacket collides with the left side of the well. Part of the wavepacket leaks through the
lip/barrier and a standing wave begins to build up from the right-moving and reflected waves
within the deep well region. Since the well is so deep, the standing wave has a large kinetic energy,
evident from the numerous nodes in the well region. Note also that the wavepacket leaks out the
far side of the well so that for later times the wavepacket has a large spatial extent.

We can focus on the portion of the wavepacket that is trapped in the well region by zooming
into that region, as shown in figure 4.11. Note that the wavefunction builds up quickly but the
amplitude decays away very slowly. We can observe this decay by integrating the probability
density over the well region only and plotting its time-dependence. That is, we calculate the
following:

a (T) =

∫ W/2

−W/2

dX∣⟨X ∣Ψ⟩ (T) ∣2. (4.35)

For the situation shown in figures 4.10 and 4.11 the result is plotted in figure 4.12. Clearly there
is rapid increase in probability density but then it decreases quite slowly. The time-dependence of
this reduction is reminiscent of an exponential decay. The code that shows the wavepacket collision
is listed in TDSE_SOLVER_EX5.

73

Quantum Dynamics in One Dimension

W

H r

Vo

Figure 4.9: Well with a half Gaussian barrier on both sides corresponding to equation 4.34.

pro tdse_solver_ex5

; Visualization of a Gaussian wavepacket scattering

; from a deep well with a lip, illustrating a virtual or

; metastable state.

; Define the space-time grid

xlo = -30.0 & xhi = 30.0

nx = 1000 & x = linspace(xlo,xhi,nx)

nt = 1500 & t = linspace(0.0,4.5,nt)

i = complex(0.0,1.0) & k = 3.0

wf_init = exp(-0.5*((x+13.0)/3.0)ˆ2)*exp(i*k*x)

energy = tdse_calc_energy(x,wf_init)

v = fltarr(nx)

vo = -100.0 ; well depth

w = 6.*!pi/k ; width of the well

h = 10.0 ; height of the well

r = 1.0 ; decay of well lip

; Define region I

xo = 0.5*w

regI = where(x lt -xo)

regII = where((x ge -xo) and (x le xo))

regIII = where(x gt xo)

v[regII] = vo

v[regI] = h*exp(-0.5*((x[regI]+xo)/r)ˆ2)

v[regIII] = h*exp(-0.5*((x[regIII]-xo)/r)ˆ2)

ok = tdse_check_params(x,t,wf_init,v)

if ˜ok then return

74

4.6 Scattering from a Well with a Lip: Metastable/Virtual States

Figure 4.10: Scattering of a Gaussian wavepacket from a potential well with a Gaussian lip.
The parameters used in this computation were J = 1000, N = 1500, x0 = −13, k0 = 3, � = 3,
−30 ≤ X ≤ 30, and 0 ≤ T ≤ 4.5. The well has the parameters H = 10, r = 1, and W = 2�. The
probability density has been offset vertically by its kinetic energy.

75

Quantum Dynamics in One Dimension

Figure 4.11: Same as 4.10 but with the well region expanded to see the standing wave detail.

76

4.6 Scattering from a Well with a Lip: Metastable/Virtual States

Figure 4.12: Time-dependence of the probability density integrated over the well region. Note
the decay after the standing wave has achieved its maximum amplitude in the well.

77

Quantum Dynamics in One Dimension

psi = tdse_solver(x,t,wf_init,v)

xr = [-5.,5.0] & ind = where((x ge xr[0]) and (x le xr[1]))

ret = animate_wavefunction(x[ind],t,v[ind],psi[ind,*],offset = energy)

; Now integrate the probability density over the "trapped" region

; and display the integrated probability as a function of time.

intensity = fltarr(nt) & prob = abs(psi)ˆ2

xlim = x[regII,*]

problim = prob[regII,*]

for j = 0,nt-1 do intensity[j] = int_tabulated(xlim,problim[*,j])

window,/free

plot,t,intensity,background = fsc_color(’white’),color = fsc_color(’black’),$

xtitle = ’!6T’,ytitle = ’!6a(T)’,title = ’!6a(T)’,xrange = [0,max(t)],/xstyle

end

* Ex. 28 — For the example just discussed, construct and observe the animated sequence for
the time-dependent momentum probability distribution, ∣� (k, T) ∣2. Identify the feature(s) in
momentum space corresponding to the standing wave in the well.

** Ex. 29 — Create an animated sequence that illustrates the phenomenon of radioactive nuclear
decay. As a simple model of a nucleus undergoing �-decay, consider a Gaussian wavepacket confined
initially to a potential well, V (x), and traveling to the right with k = 3. A simple potential that
models this phenomenon is given by

V (x) =

⎧

⎨

⎩

∞, x < x1
−V0, x1 ≤ x ≤ x2

Hexp
(

− 1
2

(

x−x2

r

)2
)

, x > x2

(4.36)

In this model your Gaussian wavepacket should initially be completely confined within x1 ≤ x ≤ x2.
In addition to observing the animated sequence and watching the wavepacket leak out of the well,
determine the decay curve, a (T) as in figure 4.12.

78

Chapter 5

Quantum Dynamics in Two
Dimensions

Though the animations of quantum scattering in one dimension are striking, seeing how a two-
dimensional wavepacket scatters from even the simplest of potentials illustrates some of the most
profound and visually arresting results from quantum mechanics. Perhaps one of the most intrigu-
ing results is that of a particle interfering with itself which becomes accessible in two dimensions
in a manner arguably more impressive than in one dimension.

Another application of the two-dimensional Schrödinger equation is for two one-dimensional
systems of interacting particles. A number of intriguing possibilities surface when we are able to
show the dynamic evolution of two quantum particles whose motion is not only determined by their
own independent potentials, but also an interaction term. We will illustrate a few cases of parti-
cles interacting, including two ”free” particles (i.e. wavepackets with no independent potentials)
colliding. In addition we will demonstrate a wavepacket interacting with an harmonic oscillator
through a hard-core repulsive interaction.

5.1 The Algorithm of Askar and Cakmak

We begin with the Schrödinger equation in two dimensions:

H = − ℏ
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

⟨x, y∣ ⟩ + V (x, y) ⟨x, y∣ ⟩ = E⟨x, y∣ ⟩. (5.1)

In our derivation of the GSS algorithm in chapter 4 we found that a straightforward application
of finite differences in the time-domain resulted in an algorithm that was unstable and probability
was not conserved. We used an approximation to the exponential time-development operator
which resulted in an implicit algorithm. Askar and Cakmak came up with an algorithm that
was both explicit and stable by also considering an approximation involving the time-development
operator.[18] We will develop the one-dimensional algorithm of Askar and Cakmak first and then
simply present the result of its extension to two dimensions.

Following the original development in Askar and Cakmak’s paper we choose units in which
ℏ = m = 1. Note the difference to the choice of the GSS algorithm (ℏ = 2m = 1). The approxi-
mation to the wavefunction in time and space is given by n

j where, similar to the development of

79

Quantum Dynamics in Two Dimensions

the GSS algorithm in the previous chapter, n is the time index and j is the index for the spatial
coordinate. The Hamiltonian action on the discretized wavefunction is given by

H n
j = − 1

2Δ2
x

(

 n
j+1 + n

j−1 − 2 n
j

)

+ Vj
n
j . (5.2)

The time-development operator has the following action on the discretized wavefunction

 n+1
j = e−iΔtH n

j (5.3)

and

 n−1
j = eiΔtH n

j . (5.4)

Subtracting equation 5.4 from equation 5.3 and taking a small argument expansion yields

 n+1
j − n−1

j ≃ −2iΔtH n
j . (5.5)

We can now substitute the action of the Hamiltonian on the discretized wavefunction into this
equation, and solve for the wavefunction at time n+ 1:

 n+1
j = n−1

j − 2i[(2�x + VjΔt)
n
j − �x

(

 n
j+1 + n

j−1

)

] (5.6)

where �x = 1
2Δt/Δ

2
x.

This result is easily extended to two spatial dimensions with the final result, again an explicit
method as in one dimension,

 n+1
j,k = n−1

j,k −2i[(2 (�x + �y) + Vj,kΔt)
n
j,k−�x

(

 n
j+1,k + n

j−1,k

)

−�y

(

 n
j,k+1 + n

j,k−1

)

] (5.7)

where �x = 1
2Δt/Δ

2
x and �y = 1

2Δt/Δ
2
y.

Though this equation is explicit, it relies on knowledge of the wavefunction at two previous
time steps. Since we assume that we only know the wavefunction at the initial time step, n = 0,
we must determine the wavefunction at n = 1. The way in which we do this is that we apply the
following approximation to the time-development operator:

 n
j,k = e−iΔtH n

j,k

≃ (1− iΔtH) n
j,k.

Of course we know that this is an inherently unstable way to propagate the solution in time because
errors will accumulate at each time step. However it is acceptable to do this for a single time step
because there will not be a systematic accumulation of errors. Completing the algebraic steps
yields the following approximation for the first time step

 1
j,k = 0

j,k − i (ΔtVj,k + 2 (�x + �y))
0
j,k + i�x

(

 0
j+1,k + 0

j−1,k

)

+ i�y

(

 0
j,k+1 + 0

j,k−1

)

. (5.8)

From this point on it is straightforward to apply the explicit algorithm in equation 5.7 to calculate
 n
j,k for all time steps from n = 2 forward.

Ex. 30 — Using the method outlined in the last chapter, determine the scaling of this algorithm
for ℏ = m = 1. Specifically, determine the scaling of the spatial coordinates.

80

5.2 Two-Dimensional Scattering

5.2 Two-Dimensional Scattering

The IDL implementation of the algorithm of Askar and Cakmak is found in the function TDSE2D_SOLVER.
This function requires the following input parameters: x and y which are vectors of equally-spaced
grid points, t which is a vector of equally-spaced times, wf which is the initial wavefunction defined
over the spatial grid, and v which is the potential defined over the spatial grid. Optional inputs
include the keywords output, skip, winpix, and winvis. If the output keyword is set then an
animated sequence of images showing the time-evolution of the wavepacket will be displayed. The
speed of the animation can be controlled by altering the number of frames to skip by setting the
skip keyword equal to this number of frames to skip. If the function TDSE2D_SOLVER is being
called from another program that already has an active display window and pixmap, they can be
passed into the function using the winvis and winpix keywords. They will then be updated. If
they are not passed into the function then the function creates its own pixmap and display window.

This function differs in functionality from the GSS algorithm described in chapter 4 with the
inclusion of these display keywords. The reason that we include these keywords is so that we don’t
have to run the function and then store a large array. That was acceptable in one dimension but
the arrays to store the full time-dependence of the various quantities can become too large to do
this effectively. So the implementation of the Askar and Cakmak algorithm is necessarily broken
up at each time step with an option to send the probability density to a display window. However,
if the output keyword is not set then the function returns a structure with the probability density
in the prob field of the structure.

function tdse_2dsolver,x,y,t,wf_init,v, $

output = output, $

skip = skip, $

winpix = winpix, $

winvis = winvis

compile_opt idl2,hidden

!except = 0

if n_elements(skip) eq 0 then skip = 1

skip = skip > 1 & wf = reform(wf_init[*,*,0])

nx = n_elements(x) & ny = n_elements(y)

xm = rebin(x,nx,ny,/sample) & ym = rebin(transpose(y),nx,ny,/sample)

nt = n_elements(t) & dx = (x[1] - x[0])

xlo = min(x,max = xhi) & ylo = min(y,max = yhi)

dy = (y[1] - y[0]) & dt = t[1] - t[0]

a_x = 0.5*dt/(dxˆ2) & a_y = 0.5*dt/(dyˆ2)

i = complex(0.0,1.0); the imaginary unit

; Normalize the initial wavefunction

c = total((abs(wf))ˆ2)*dx*dy

wf = wf/sqrt(c)

maxprob = max((abs(wf))ˆ2)

output = keyword_set(output)

if output then begin

if n_elements(winvis) eq 0 then begin

winvis = 0 & xsize = (ysize = 700)

window,winvis,xsize = xsize,ysize = ysize

endif

81

Quantum Dynamics in Two Dimensions

if n_elements(winpix) eq 0 then begin

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

endif

endif

temp_0 = 1d*wf

; First need to evaluate the wavefunction at time t = 1*dt (i.e. n = 1)

; We will use a forward difference to approximate the time derivative

temp_1 = temp_0

temp_1[1:nx-2,1:ny-2] = (1.-i*(dt*v[1:nx-2,1:ny-2]+2.*(a_x+a_y)))*temp_0[1:nx-2,1:ny-2]+ $

i*a_x*(temp_0[2:nx-1,1:ny-2]+temp_0[0:nx-3,1:ny-2])+ $

i*a_y*(temp_0[1:nx-2,2:ny-1]+temp_0[1:nx-2,0:ny-3])

temp_2 = temp_1

if ˜output then begin

prob = fltarr(nx,ny,nt)

prob[*,*,0] = (abs(temp_0))ˆ2

prob[*,*,1] = (abs(temp_1))ˆ2

endif else begin

wset,winpix

title = ’T=’+strtrim(string(t[0],format = ’(f15.2)’),2)

maxprob = max((abs(temp_1))ˆ2)

plotimage,bytscl((abs(temp_1))ˆ2,max = maxprob),imgxrange = [xlo,xhi], $

imgyrange = [ylo,yhi], xtitle = ’x’,ytitle = ’y’, title = title, $

xstyle = 5,ystyle = 5

contour,v,xm,ym, /noerase,xrange = [xlo,xhi],ystyle = 5,xstyle = 5,yrange = [ylo,yhi]

wset,winvis & device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]

endelse

; Now evolve the wavefunction in time...

for n = 1L,nt-2 do begin

temp_2[1:nx-2,1:ny-2] = (temp_0[1:nx-2,1:ny-2]) - $

2.*i*((2.*(a_x+a_y)+v[1:nx-2,1:ny-2]*dt)*(temp_1[1:nx-2,1:ny-2]) - $

a_x*((temp_1[2:nx-1,1:ny-2])+(temp_1[0:nx-3,1:ny-2])) - $

a_y*((temp_1[1:nx-2,2:ny-1])+(temp_1[1:nx-2,0:ny-3])))

temp_0 = temp_1 & temp_1 = temp_2

if output and ((n mod skip) eq 0) then begin

wset,winpix

title = ’T=’+strtrim(string(t[n],format = ’(f15.2)’),2)

maxprob = max((abs(temp_1))ˆ2)

plotimage,bytscl(((abs(temp_1))ˆ2),max = maxprob),imgxrange = [xlo,xhi], $

imgyrange = [ylo,yhi],title = title,xstyle = 5,ystyle = 5

contour,v,xm,ym, /noerase,xrange = [xlo,xhi],ystyle = 5,xstyle = 5

wset,winvis & device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]

endif

if ˜output then prob[*,*,n+1] = (abs(temp_2))ˆ2

endfor

return,output ? {void:0B} : {prob:prob}

82

5.2 Two-Dimensional Scattering

end

As in the one-dimensional case, we wish to scatter Gaussian wavepackets. The function
GAUSS2DWP creates a normalized, propagating wavepacket. The required input parameters are xm

and ym which are arrays of equally-spaced grid values for each of the respective dimensions. The
wavepacket’s location is specified via the keywords xo and yo. The propagation wavevectors are
specified with the keywords px and py. The widths of the wavepacket in each dimension are
specified with the keywords sigx and sigy.

function gauss2dwp,xm,ym, $

xo = xo, $

yo = yo, $

px = px, $

py = py, $

sigx = sigx, $

sigy = sigy

compile_opt idl2,hidden

; Returns a normalized two-dimensional complex

; Gaussian wavefunction.

if n_elements(xo) eq 0 then xo = 0.0

if n_elements(yo) eq 0 then yo = 0.0

if n_elements(px) eq 0 then px = 0.0

if n_elements(py) eq 0 then py = 0.0

if n_elements(sigx) eq 0 then sigx = 1.0

if n_elements(sigy) eq 0 then sigy = 1.0

i = complex(0.0,1.0)

dx = xm[1,0] - xm[0,0] & dy = ym[0,1] - ym[0,0]

arg1 = ((xm-xo)/sigx)ˆ2+((ym-yo)/sigy)ˆ2

arg2 = -i*(px*(xm-xo)+py*(ym-yo))

psi = exp(-0.75*arg1)*exp(-0.75*arg2)

; Normalize the probability density

c = sqrt(total((abs(psi))ˆ2)*dx*dy)

psi = psi/c

return,psi

end

5.2.1 Self-Interference: Transmission through Double-Slits

The double-slit experiment demonstrated one of the most profound results of quantum mechanics–
namely, wave-particle duality. In the experiment an electron gun fires electrons at a phosphorescent
screen. When an electron strikes the screen, a ”hit” is registered as a light dot. An absorbing screen
with two small slits separated by a small distance is then placed between the electron gun and the
detection screen. The first few electrons that pass through the slit system are registered on the
detection screen as dots, proving their particle nature. However as many more electrons are fired
from the gun, a pattern emerges on the detection screen. This pattern is composed of alternating
light and dark regions with a central maximum positioned in between the two slits. The intensity of

83

Quantum Dynamics in Two Dimensions

the bands decreases the further away you go from the central maximum. This pattern is identical
to a two-slit interference pattern for a wave, thus illustrating the wave-like nature of electrons.

We define the potential of the two-slit system with the function TDSE_2D_2SLITS. Note that
in this implementation we have made the slit system not out of absorbing material but out of
reflecting material so that there should be backscatter as well as transmission.

function tdse_2d_2slits,xm,ym

compile_opt idl2,hidden

v = 0.0*xm

a = 1.0 ; width of each slit opening

w = 0.5 ; thickness of the barrier

s = 2.0 ; center-to-center slit distance

xcond = (xm ge 0.0) and (xm le w)

ycond1 = (ym ge 0.5*(s+a)) and xcond

ycond2 = (ym le -0.5*(s+a)) and xcond

ycond3 = (ym ge -0.5*(s-a)) and (ym le 0.5*(s-a)) and xcond

indices = where(ycond1 or ycond2 or ycond3,count)

ind = array_indices(xm,indices)

vo = 100.0

if count gt 0 then v[ind[0,*],ind[1,*]] = vo

return,v

end

The time-evolution of the wavepacket interacting with the two-slit system is performed in
the program TDSE2D_EX1 listed below. In this program, the interaction is represented as an image.
Six frames from the animation are shown in figure 5.1. From the figure it is clear that there
are reflected and transmitted components. The transmitted component of the probability density
shows the interference phenomena in both but the result of the experiment described above is
shown in the transmitted portion.

pro tdse2d_ex1

; Solves the time-dependent SE in 2-dims for

; a Gaussian wavepacket interacting with a 2 slit

; system.

device,decomposed = 0 & loadct,1,/silent

; Define the space-time mesh

nx = 130 & ny = 130

x = linspace(-7.0,10.0,nx) & y = linspace(-7.0,7.0,ny)

xm = rebin(x,nx,ny,/sample) & ym = rebin(transpose(y),nx,ny,/sample)

tlo = 0.0 & thi = 1.75 & nt = 2000

t = linspace(tlo,thi,nt)

v = tdse_2d_2slits(xm,ym)

wf = gauss2dwp(xm,ym, $

xo = -4.0, $

yo = 0.0, $

px = 6.0, $

84

5.2 Two-Dimensional Scattering

py = 0.0, $

sigx = 1.0, $

sigy = 1.0)

ret = tdse_2dsolver(x,y,t,wf,v,skip = 15,/output)

end

In a measurement on the detector screen after the two-slit system the intensity pattern will
be a diffraction pattern. This is shown in figure 5.2 which is the result of taking a cut of the
probability density at X = 2.2.

Ex. 31 — What are the real physical dimensions of the slit system modeled in the dynamics
shown in figure 5.1 if the particle mass is m = 1 u and � = 1?

5.2.2 Dynamics of Quantum Billiards

In chapter 2 we used the discrete variable approximation to find the stationary states and eigenval-
ues for various one-dimensional and two-dimensional potentials. For the two-dimensional potentials
the potentials were boundaries that defined closed systems. These systems have attracted interest
because classical particles in stadia potentials exhibit chaotic motion which motivated the search
for chaotic behavior in the quantum analogs. We can use the algorithm of Askar and Cakmak to
compute the time-evolution of a wavepacket confined to move within a stadium potential. The
stadium is defined in the IDL function TDSE2D_STADIUM_POTENTIAL below. The code that displays
the animated sequence of a wavepacket propagating in a stadium potential is listed below and se-
lected frames from the animation are shown in figure 5.3. Note that only the inner boundary of
the stadium potential is shown in figure 5.3.

function tdse2d_stadium_potential, xm,ym

compile_opt idl2,hidden

v = 0.0*xm

r = 3.0 & thick = 0.5 & l = 5.0

xo = 0.0 & yo = 0.0

vo = 80.0

; Define region II (the mid region)

cond_II_1 = ((xm ge -(0.5*L+thick)) and $

(xm le (0.5*L+thick))) and ((ym ge R) and (ym le (R+thick)))

cond_II_2 = ((xm ge -(0.5*L+thick)) and $

(xm le (0.5*L+thick))) and ((ym ge -(R+thick)) and (ym le -R))

cond_II = cond_II_1 or cond_II_2

; Define region III (the positive circular region)

cond_III = (xm ge 0.5*L) and ((((xm-0.5*L)ˆ2 + (ym)ˆ2) ge Rˆ2) and $

(((xm-0.5*L)ˆ2 + (ym)ˆ2) le (R+thick)ˆ2))

; Define region I

cond_I = (xm le -0.5*L) and ((((xm+0.5*L)ˆ2 + (ym)ˆ2) ge Rˆ2) and $

(((xm+0.5*L)ˆ2 + (ym)ˆ2) le (R+thick)ˆ2))

cond = (cond_I or cond_III or cond_II)

indices = where(cond,count)

ind = array_indices(xm, indices)

if count gt 0 then v[ind[0,*],ind[1,*]] = vo

85

Quantum Dynamics in Two Dimensions

Figure 5.1: Time-evolution of the probability density for a wavepacket scattering from a two-slit
system. Note the significant amount of ”backscatter”, especially at later times, due to reflection
from the potential.

86

5.2 Two-Dimensional Scattering

Figure 5.2: Intensity pattern found in a detector screen placed at X = 2.2 for the example
displayed in figure 5.1.

return,v

end

pro tdse2d_ex2

; Solves the time-dependent SE in 2-dims for

; a Gaussian wavepacket confined to a stadium

; potential.

device,decomposed = 0

loadct,5,/silent

; Define the space-time mesh

nx = 130 & ny = 130

x = linspace(-9.0,9.0,nx) & y = linspace(-5.0,5.0,ny)

xm = rebin(x,nx,ny,/sample) & ym = rebin(transpose(y),nx,ny,/sample)

tlo = 0.0 & thi = 5.0 & nt = 4000

t = linspace(tlo,thi,nt)

v = tdse2d_stadium_potential(xm,ym)

wf = gauss2dwp(xm,ym, $

xo = -2.0, $

yo = 0.0, $

px = -3.0, $

py = 0.0, $

sigx = 1.0, $

sigy = 1.0)

skip = 15

87

Quantum Dynamics in Two Dimensions

result = tdse_2dsolver(x,y,t,wf,v,skip = skip,/output)

end

* Ex. 32 — For the stadium potential can you select a set of initial conditions for the Gaussian
wavepacket so that when kx = ky = 0 initially, the center-of-mass of the wavepacket will propagate?
Hint: try modifying x0 and y0. Modify the program TDSE2D_EX2 to see if you can obtain this
behavior.

5.2.3 Dynamics of a Wavepacket in Archimedes’ Spiral

In this final section on dynamics in two spatial dimensions we look at the time-evolution of a
wavepacket initially at rest in the center of a curve called Archimedes’ spiral. The fascinating
aspect of this system is that the wavepacket does not remain at rest. Because of the quantum
nature of the system, the wavepacket spreads and begins to interact with the curved wall. In so
doing, it acquires angular momentum and begins to curl around the spiral until it leaks out.

The function that creates the potential boundary given by Archimedes’ spiral is given in
TDSE2D_ARCHIMEDES_SPIRAL below. This function uses a unique manner to obtain the potential.
First, the spiral is generated with a complex parametric equation z (t) = teit where i is the
imaginary unit. The x and y (real and imaginary) parts of z (t) are used as the coordinates for the
curve. Specifically,

z (t) = teit

= t cos t+ it sin t

= x (t) + iy (t) .

Therefore the x and y components of the spiral are defined parametrically by x (t) = t cos t and
y (t) = t sin t. This curve is drawn to a pixmap in IDL—a window in memory that has the same
size and dimensions as the mesh for the computation—and then the IDL function TVRD is used
to obtain a byte image of the window’s contents. The image is finally scaled into an appropriate
range for the potential.

function tdse2d_archimedes_spiral,xm,ym

compile_opt idl2,hidden

xms = size(xm,/dimensions)

xsize = xms[0] & ysize = xms[1]

v = 0.0*xm & vo = 80.0

n = 100 & tlo = 0.5*!pi & dt = 3.*!pi/(n-1.0)

t = tlo+dt*findgen(n)

i = complex(0.0,1.0)

z = t*exp(i*t)

x = float(z) & y = imaginary(z)

im1 = bytarr(xsize,ysize)

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

xr = [-10.0,10.0] & yr = xr

tvlct,r,g,b,/get

device,decomposed = 0

88

5.2 Two-Dimensional Scattering

Figure 5.3: Time-evolution of the probability density corresponding to a propagating Gaussian
wavepacket in a stadium potential. The wavepacket is given an initial wavevector kx = −3, it is
initially located at x0 = −2, and has a standard deviation defined by �x = �y = 1.

89

Quantum Dynamics in Two Dimensions

loadct,0,/silent

plot,x,y,xrange = xr,yrange = yr,xstyle = 5,ystyle = 5,$

thick = 4.0,xmargin = [0,0],ymargin = [0,0]

img = tvrd()

wdelete,winpix

device,decomposed = 1

tvlct,r,g,b

v = float(img)*(vo/255.0)

return,v

end

The program that illustrates the time-evolution of an initially stationary wavepacket at the
center of the spiral is TDSE2D_EX3, shown below. Initally the Gaussian wavepacket has a width
defined by �x = �y = 0.5. As time progresses, the center-of-mass of the wavepacket moves outward
along the path of the spiral. Selected frames from the animation sequence are shown in figure 5.4.
Note that only a trace of the spiral boundary is shown in figure 5.4 for clarity. The contour is
shown in your animation TDSE2D_EX3.

pro tdse2d_ex3

; Solves the time-dependent SE in 2-dims for

; a Gaussian wavepacket confined initially to

; the center of Archimedes’ spiral.

device,decomposed = 0

loadct,3,/silent

; Define the space-time mesh

nx = 100 & ny = 100

x = linspace(-4.0,4.0,nx) & y = linspace(-4.0,4.0,ny)

xm = rebin(x,nx,ny,/sample) & ym = rebin(transpose(y),nx,ny,/sample)

tlo = 0.0 & thi = 5.0 & nt = 5000

t = linspace(tlo,thi,nt)

v = tdse2d_archimedes_spiral(xm,ym)

wf = gauss2dwp(xm,ym, $

xo = 0.0, $

yo = -0.5, $

px = 0.0, $

py = 0.0, $

sigx = 0.5, $

sigy = 0.5)

skip = 15

result = tdse_2dsolver(x,y,t,wf,v,skip = skip,/output)

end

*** Ex. 33 — Calculate the angular momentum as a function of space and time for a Gaussian
wavepacket initially stationary in a potential with a boundary defined by Archimedes’ spiral.
Display the time-evolution as a function of time.

90

5.2 Two-Dimensional Scattering

Figure 5.4: Time-evolution of the probability density corresponding to an initially stationary
Gaussian wavepacket in a potential with a boundary defined by Archimedes’ spiral. The wavepacket
initially has a width defined by �x = �y = 0.5.

91

Quantum Dynamics in Two Dimensions

5.3 Colliding Particles

Up until this point we have discussed a single particle interacting with a potential, either in one or
two dimensions. Therefore, the collisions we have observed thus far have been elastic. In nature a
particle does not generally interact with just a potential but rather with other particles–and the
interaction is mediated through some potential. For instance, two particles can scatter from each
other after interacting through a short-range repulsive interaction. This is often referred to as a
billiard ball collision. If the target particle is significantly more massive than the probe particle
then the system is indeed approximated well by a single particle interacting with a potential. In
two-particle collisions, one particle can gain or lose energy to the other but energy is conserved
for the overall system. In neutron scattering measurements—or any particle experiment where a
particle or beam of particles scatters from a target particle—energy can be exchanged between the
target and probe particles and this then provides direct information on the dynamics of the target.
The researcher must figure out what the target was doing based on the behavior of the scattered
particles. This can be challenging and our goal in this last section is to provide a space-time view
of simple two-particle scattering events.

As described in chapter 1, we consider two one-dimensional particles interacting through a
pair potential V (x1, x2). This pair potential can be composed of perhaps three additive terms, two
of which (V1 (x1) and V2 (x2)) could govern the behavior of the individual particles and the third
(V1,2 (x1, x2)) could describe the interaction between the two particles. This necessarily increases
the dimensionality of the Schrödinger equation that describes the dynamics of the system to two
dimensions. The equation that governs the dynamics, equation 1.11, is repeated below for reference:

H = −ℏ
2

(

1

2m1

∂2

∂x21
+

1

2m2

∂2

∂x22

)

+ V (x1, x2) . (5.9)

We will set ℏ = 1 but we will leave the flexibility of having different particle masses, m1 and
m2. Furthermore, since the Hamiltonian above acts on a two-particle entangled wavefunction,
⟨x1, x2∣ ⟩, we cannot in general disentangle the single-particle probability densities. However we
can marginalize the probability densities as described in chapter 1 via

�1 (x1) =

∫ ∞

−∞
dx2
∣

∣⟨x1, x2∣ ⟩
∣

∣

2
(5.10)

and

�2 (x2) =

∫ ∞

−∞
dx1
∣

∣⟨x1, x2∣ ⟩
∣

∣

2
. (5.11)

When we observe the dynamics long before or long after the collision then these expressions, �1 (x1)
and �2 (x2), are good approximations to the probability densities for the individual particles.

The modification of the algorithm of Askar and Cakmak is straightforward. In order to
calculate the dynamics of two colliding particles with different masses, m1 and m2, we need to
slightly modify equation 5.7,

 n+1
j,k = n−1

j,k − 2i[(2 (�x1
+ �x2

) + Vj,kΔt)
n
j,k − �x1

(

 n
j+1,k + n

j−1,k

)

− �x2

(

 n
j,k+1 + n

j,k−1

)

]
(5.12)

where

�x1
=

1

2m1

Δt

Δx21
(5.13)

and

�x2
=

1

2m2

Δt

Δx22
. (5.14)

92

5.3 Colliding Particles

The function that solves the two-particle Schrödinger equation is named TDSE_2PARTICLE_SOLVER

and it is listed below. In this function, the wavefunction for each of the particles is assumed to be
defined on the same x-coordinate. The manner in which we treat the true two-dimensionality of the
problem is that we inflate the x vector into an array that is Nx ×Nx to create x1 and transpose it
to create x2. The required input parameters are x, t, wf1, and wf2. These are all one-dimensional
vectors specifying the spatial coordinate, time, wavefunction for particle 1 and wavefunction for
particle 2, respectively. The optional input parameters are v1, v2, v12, m1, m2, output, skip,
winpix, and winvis. All of the potential terms, v1, v2, and v12 are arrays specified on the grid
defined by the outer productx × xT which has dimensions Nx × Nx. The masses of the particles
are specified by m1 and m2. The remaining keywords are identical to those in TDSE2D_SOLVER.

function tdse_2particle_solver,x,t,wf1,wf2, $

v1 = v1, $

v2 = v2, $

v12 = v12, $

m1 = m1, $

m2 = m2, $

output = output, $

skip = skip, $

winpix = winpix, $

winvis = winvis

compile_opt idl2,hidden

!except = 0

if n_elements(skip) eq 0 then skip = 1

skip = skip > 1

if n_elements(m1) eq 0 then m1 = 1.0

if n_elements(m2) eq 0 then m2 = 1.0

nx = n_elements(x) & xm = rebin(x,nx,nx,/sample)

xlo = min(x,max = xhi) & dx = x[1] - x[0]

dt = t[1] - t[0] & nt = n_elements(t)

nframes = fix(float(nt)/float(skip))+1

a_1 = 0.5*dt/(dxˆ2) & a_2 = 0.5*dt/(m2*dxˆ2)

i = complex(0.0,1.0); the imaginary unit

output = keyword_set(output)

if output then begin

if n_elements(winvis) eq 0 then begin

winvis = 0 & xsize = (ysize = 400)

window,winvis,xsize = xsize,ysize = ysize

endif

if n_elements(winpix) eq 0 then begin

window,/free,/pixmap,xsize = xsize,ysize = ysize

winpix = !d.window

endif

endif

wf = wf1#wf2

c = total(abs(wf)ˆ2) & wf = wf/sqrt(c)

if n_elements(v12) eq 0 then v12 = 0*xm

if n_elements(v1) eq 0 then v1 = 0*xm

if n_elements(v2) eq 0 then v2 = 0*xm

93

Quantum Dynamics in Two Dimensions

v = v1 + v2 + v12 & rho = abs(wf)ˆ2

p1 = dx*total(rho,2) & p2 = dx*total(rho,1)

xr = [xlo,xhi] & yr = [0.0,1.1*max([max(p1),max(p2)])]

temp_0 = 1d*wf

; First need to evaluate the wavefunction at time t = 1*dt (i.e. n = 1)

; We will use a forward difference to approximate the time derivative

temp_1 = temp_0

temp_1[1:nx-2,1:nx-2] = (1.-i*(dt*v[1:nx-2,1:nx-2]+$

2.*(a_1+a_2)))*temp_0[1:nx-2,1:nx-2]+ $

i*a_1*(temp_0[2:nx-1,1:nx-2]+temp_0[0:nx-3,1:nx-2])+ $

i*a_2*(temp_0[1:nx-2,2:nx-1]+temp_0[1:nx-2,0:nx-3])

temp_2 = temp_1

counter = 0L

if ˜output then begin

rho1 = fltarr(nx,nframes) & rho2 = fltarr(nx,nframes)

rho = (abs(temp_0))ˆ2

rho1[*,counter] = p1

rho2[*,counter] = p2

endif else begin

rho = abs(temp_0)ˆ2

rho1 = p1 ; P(x1)

rho2 = p2 ; P(x2)

wset,winpix

title = ’!6T=’+strtrim(string(t[0],format = ’(f15.2)’),2)

plot,x,p1,xtitle = ’!6X’,psym = 0,thick = 2,xrange = xr,$

title = title, yrange = yr,xstyle = 1,ystyle = 1,$

ytitle = ’!7q!6!d1!n(X!d1!n,T), !7q!6!d2!n(X!d2!n,T)’, $

color = fsc_color(’black’),background = fsc_color(’white’)

oplot,x,p2,psym = 0,thick = 2,color = fsc_color(’black’),linestyle = 2

wset,winvis & device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]

endelse

; Now evolve the wavefunction in time...

for n = 1L,nt-2 do begin

temp_2[1:nx-2,1:nx-2] = (temp_0[1:nx-2,1:nx-2]) - $

2.*i*((2.*(a_1+a_2)+v[1:nx-2,1:nx-2]*dt)*(temp_1[1:nx-2,1:nx-2])- $

a_1*((temp_1[2:nx-1,1:nx-2])+(temp_1[0:nx-3,1:nx-2])) - $

a_2*((temp_1[1:nx-2,2:nx-1])+(temp_1[1:nx-2,0:nx-3])))

temp_0 = temp_1 & temp_1 = temp_2

rho = abs(temp_0)ˆ2

p1 = dx*total(rho,2) ; P(x1)

p2 = dx*total(rho,1) ; P(x2)

if output and ((n mod skip) eq 0) then begin

wset,winpix

title = ’!6T=’+strtrim(string(t[n],format = ’(f15.2)’),2)

plot,x,p1,xtitle = ’!6X’,psym = 0,thick = 2,xrange = xr,yrange = yr,$

xstyle = 1, ystyle = 1,title = title,$

ytitle = ’!7q!6!d1!n(X!d1!n,T), !7q!6!d2!n(X!d2!n,T)’,$

color = fsc_color(’black’),background = fsc_color(’white’)

oplot,x,p2,psym = 0,thick = 2,color = fsc_color(’black’),linestyle = 2

94

5.3 Colliding Particles

wset,winvis & device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]

endif

if ((˜output) and ˜(n mod skip)) then begin

counter++

rho1[*,counter] = p1

rho2[*,counter] = p2

endif

endfor

return,output ? {void:0B} : {prob1:rho1,prob2:rho2}

end

The interaction term that we will choose for the examples presented in the next sections
will be repulsive and can be written as

V (x1, x2;�) = V01
+ (� − ∣x1 − x2∣) (5.15)

where � is the interaction distance, V0 is the interaction strength, and 1+ (x) is the Heaviside step
function. This function, 1+ (x), is implemented in IDL in HEAVISIDE_STEP shown below.

function heaviside_step,x

compile_opt idl2,hidden

return,(x gt 0) + 0.0*(x lt 0) + 0.5*(x eq 0)

end

5.3.1 Colliding Billiard Balls

Perhaps the simplest example of two particles interacting is that of two free particles (i.e. V1 (x1) =
V2 (x2) = 0 for each particle) that interact when they ”touch.” The notion of particles ”touching”
in quantum mechanics is not as plain as it is for classical particles where surface contact is a
meaningful definition. We will assume that a ”contact” potential like the repulsive interaction
term in equation 5.15 is the only term in the potential and that the initial wavefunctions are
Gaussian wavepackets. The program FREE_PARTICLE_COLLISION displays the time-evolution for a
system composed of a wavepacket of mass m1 = 3 at rest located at x0 = −5 and a wavepacket of
mass m2 = 1 initially located at x0 = −15 with a wavevector kx = 3.

pro free_particle_collision

; This program shows a collision between

; two free particles interacting through a

; hard-core repulsion.

nx = 146 & nt = 5000

xlo = -25.0 & xhi = 25.0 & x = linspace(xlo,xhi,nx)

xm = rebin(x,nx,nx,/sample)

dt = 0.002 & t = dt*findgen(nt)

i = complex(0.0,1.0)

; Define the initial wavepackets

fwhm1 = 5.0 & cen1 = -15.0 & k1 = 3.0 & sig1 = fwhm1/2.354

95

Quantum Dynamics in Two Dimensions

arg1 = 0.5*((x-cen1)/sig1)ˆ2

g1 = (1./sqrt(2.0*!pi*sig1ˆ2))*exp(-arg1)*exp(i*k1*x)

fwhm2 = 5.0 & cen2 = -5.0 & k2 = 0.0 & sig2 = fwhm2/2.354

arg2 = 0.5*((x-cen2)/sig2)ˆ2

g2 = (1./sqrt(2.0*!pi*sig2ˆ2))*exp(-arg2)*exp(i*k2*x)

; Define the interaction potential

vo = 50.0 & sigint = 1.0

vint = vo*heaviside_step(sigint-abs(xm-transpose(xm)))

ret = tdse_2particle_solver(x,t,g1,g2,v12 = vint,$

skip = 15,/output,m1 = 3.0,m2 = 1.0)

end

The marginalized densities, �1 (x1) and �2 (x2), are displayed in figure 5.5. The quantum
nature of the particles is seen in a number of aspects of this collision. First, the second particle
(dashed line) starts to move to the right before there is appreciable overlap of the wavepackets.
For a classical particle we expect that the particles would move as soon as there was any overlap.
Second, both wavepackets spread out a visible amount as the collision progresses, thus illustrating
the dispersive nature of a quantum particle.

Ex. 34 — Change the values for m1 and m2 to determine the effects on the collision process.
For the case of a wavepacket of low mass scattering from one with large mass, what do you expect
to see in the collision process? Hint: use your intuition of classical scattering of two billiard balls
of unequal mass. In particular try m1 = 1 and m2 = 10.

Ex. 35 — Change the values for � and V0, the interaction range and interaction strength in
equation 5.15, and determine the effects on the collision process.

** Ex. 36 — Write a program that transforms the two-particle, time-dependent wavefunction
⟨x1, x2∣ ⟩ (t) obtained using TDSE_2PARTICLE_SOLVER into momentum space, ⟨k1, k2∣�⟩ (t). Next
use marginalization to obtain �1 (k1, t) and �2 (k2, t) in the same way that we used it in position
space as in equations 5.10 and 5.11. Watch the time-evolution of �1 (k1, t) and �2 (k2, t). Does the
time-evolution of the momentum distributions make sense qualitatively based on your intuition of
the classical collision process?

Ex. 37 — Explore the effects of making the interaction attractive (i.e. V0 = −50).

5.3.2 Scattering from an Harmonic Oscillator

A problem that is often treated in introductory courses on classical mechanics is that of a particle
colliding with a mass on a spring. This is an interesting example because it illustrates how the a
free particle can give up its kinetic energy to the mass on the spring by compressing the spring
and then give it back to the mass and set the mass on the spring into oscillations. This is a good
example of a system exhibiting energy transfer between its components.

The quantum analog of this system is interesting and it is easy to observe the dynamics of
this system using the programs we’ve developed so far. For the free particle we still use a Gaussian
wavepacket. However we model the massm2 on the spring as a quantum simple harmonic oscillator
whose natural frequency is given by !0. The energy eigenstates of this oscillator are given by En =
(n+1/2)ℏ!0. We require use of the eigenstates of the simple harmonic oscillator, which are known

96

5.3 Colliding Particles

Figure 5.5: Time-evolution of the probability densities corresponding to a propagating Gaussian
wavepacket (k1 = 3) of mass m1 = 3 colliding with a stationary Gaussian wavepacket of mass
m2 = 1. The interaction between the two particles is repulsive with V0 = 50 and � = 1. The
wavepacket drawn with the solid line is initially propagating (k = 3) towards the stationary
wavepacket, drawn with the dashed line.

97

Quantum Dynamics in Two Dimensions

analytically, and the IDL implementation of these eigenstates, SHO_EIGENSTATES, is presented in
Appendix B. The oscillator eigenstates use Hermite polynomials whose implementation is also
described in Appendix B. The program SHO_PARTICLE_COLLISION illustrates the collision event
through an animated sequence. Selected frames from that sequence are shown in figure 5.6.

pro sho_particle_collision

; This program shows a collision between

; a free particle and a simple harmonic

; oscillator interacting through a

; hard-core repulsion.

nx = 146 & nt = 3900

xlo = -20.0 & xhi = 10.0 & x = linspace(xlo,xhi,nx)

xm = rebin(x,nx,nx,/sample)

dt = 0.002 & t = dt*findgen(nt)

i = complex(0.0,1.0)

; Define the initial wavepackets

m1 = 1.0 & m2 = 1.0

fwhm1 = 5.0 & cen1 = -5.0 & k1 = 3.0 & sig1 = fwhm1/2.354

arg1 = 0.5*((x-cen1)/sig1)ˆ2

g1 = (1./sqrt(2.0*!pi*sig1ˆ2))*exp(-arg1)*exp(i*k1*x)

wo = 1.0 ; oscillator (radial) frequency

wf2 = sho_eigenstates(0,x,m2,wo)

vsho = 0.5*m2*(wo*transpose(xm))ˆ2

; Define the interaction potential

vo = 50.0 & sigint = 1.0

vint = vo*heaviside_step(sigint-abs(xm-transpose(xm)))

ret = tdse_2particle_solver(x,t,g1,wf2,v12 = vint+vsho,$

skip = 15,/output,m1 = m1, m2 = m2)

end

In the animated sequence of the free wavepacket colliding with a ground state simple har-
monic oscillator we see that the wavepacket gives up all of its energy, coming to rest when the
oscillator reaches its maximum deviation to the right (i.e. it’s maximally ”compressed”). Clearly
the oscillator does not remain in its ground state but instead develops motion due to transitions
between the oscillator eigenstates induced by the interaction with the free wavepacket. After the
oscillator maximally ”compresses”, the wavepacket reverses direction while the oscillator contin-
ues its oscillation about its initial position. However it is clear that the wavepacket has excited
additional oscillator modes in it’s probability density evident in the additional structure observed
in �2 (x2, t). This additional structure can only come from higher-order eigenstate components.
The other noteworthy point seen in this animated sequence is that the free particle wavepacket
broadens appreciably throughout the course of the collision process.

Next we can observe the consequences of preparing the simple harmonic oscillator in its
first excited state with energy E1 = (3/2)ℏ!0. This is done by changing the line in the program
SHO_PARTICLE_COLLISION from

wf2 = sho_eigenstates(0,x,m2,wo)

to

98

5.3 Colliding Particles

Figure 5.6: Time-evolution of the probability densities corresponding to a propagating Gaussian
wavepacket of mass m1 = 1 (solid line) and k1 = 3 colliding with a simple harmonic oscillator of
the same mass, initially at rest, in its ground state (dashed line).

99

Quantum Dynamics in Two Dimensions

wf2 = sho_eigenstates(1,x,m2,wo).

Once again the free particle wavepacket starts with an initial speed corresponding to k1 = 3.
Select frames from the animated sequence are shown in figure 5.7. In this sequence we see a
curious phenomenon occur which is a result of the wave nature of the system. During the period in
which the particle is ”in contact” with the oscillator, the free wavepacket undergoes fission and is
composed of a leading and trailing edge for a short period. When the first of these two components
is reflected and begins moving to the left, the second component comes to rest. But the second
component gets a large boost from the oscillator moving to the left so that this second component
ultimately catches up to the first reflected component.

Ex. 38 — Change the values for m1 and m2 to determine the effects on the collision process.
You will have to change the discretization in space and time to ensure stability of the algorithm.

Ex. 39 — Explore the effects of making the interaction attractive (i.e. V0 = −50).

* Ex. 40 — Modify the program so that the oscillator’s initial wavefunction is composed of two
eigenstates. Obviously this is not a stationary state so it will be moving. For the case of an equal
mixture of n = 0 and n = 1 oscillator states, look at the time-evolution of the collision of a free
wavepacket (k1 = 3) with this moving oscillator.

** Ex. 41 — Write a program that transforms the two-particle, time-dependent wavefunction
⟨x1, x2∣ ⟩ (t) obtained using TDSE_2PARTICLE_SOLVER into momentum space, ⟨k1, k2∣�⟩ (t). Next
use marginalization to obtain �1 (k1, t) and �2 (k2, t) in the same way that we used it in position
space as in equations 5.10 and 5.11. Watch the time-evolution of �1 (k1, t) and �2 (k2, t) for a free
particle wavepacket with k1 = 3 and an oscillator in its ground state. Does the time-evolution
of the momentum distributions make sense qualitatively based on your intuition of the classical
collision process? How do the momentum distribution for the free particle and the oscillator differ?

100

5.3 Colliding Particles

Figure 5.7: Time-evolution of the probability densities corresponding to a propagating Gaussian
wavepacket of mass m1 = 1 (solid line) and k1 = 3 colliding with a simple harmonic oscillator of
the same mass, initially at rest, in its first excited state (dashed line).

101

Quantum Dynamics in Two Dimensions

102

Chapter 6

Quantum Visualizations

In this concluding chapter we digress from the practical aspects of computing quantum phenomena.
Here we present a number of different visualizations in one and two dimensions in color. One
purpose of doing this is simply to illustrate how the algorithms presented in this book can be used
to create interesting images. Closely related to that is that this presentation will stimulate the
reader to create his/her own visualizations through experimentation.

In chapter 4 we described how to compute the effects of wavepackets undergoing collisions
with potential barriers, wells, and combinations of the two in one dimension. Animations showing
the time-evolution of the wavepackets were presented and frames from those animations were
presented in many of the figures in that chapter. Another way to view the dynamics of the
wavepacket scattering event is through a space-time image plot where the horizontal axis is the
spatial dimension and the vertical axis is time. Even when we investigated the collision of two
one-dimensional particles in chapter 5 we looked at those dynamics via animations of the two
one-dimensional probability densities as well as sequences of frames from those animations. Those
dynamics, too, can be viewed in an image representation of the space-time plane. However in this
representation we plot the sum of the two marginal probability densities (as described in chapter
5): �1 (x1, t) + �2 (x2, t).

The cases shown here are closely related—if not exactly related through the same potentials
and initial conditions—to the cases presented in previous chapters.

103

Quantum Visualizations

X

T

Figure 6.1: Space-time plot of the evolution of a Gaussian wavepacket scattering at the interface
of a periodic potential. The position axis is horizontal and the time axis is vertical. The periodic
potential begins at the center of the horizontal axis and continues to the right. The real part of
the wavefunction is displayed.

104

X

T

Figure 6.2: Space-time plot of the evolution of a Gaussian wavepacket scattering from a potential
well with a small barrier surrounding it. A long-lived excitation of the well is evident in the
persistent mode shown that runs vertically upwards along the center of the figure. The real part
of the wavefunction is displayed.

105

Quantum Visualizations

X

T

Figure 6.3: Space-time plot of the evolution of the collision of two Gaussian wavepackets. The
first wavepacket is free and moves towards the second with an initial velocity. The second is a
wavefunction corresponding to the ground state of a simple harmonic oscillator with the associated
harmonic oscillator potential. The quantity displayed in this image is the sum of the marginal
probability distributions, �1 (x1, t) + �2 (x2, t). A countour of the same image is superimposed.

106

X

T

Figure 6.4: Space-time plot of a model of radioactive decay. A Gaussian wavepacket is ”trapped”
in a well on the left hand side of the figure. The wavepacket has an initial velocity to the right,
collides with the wall, and part of the wavepacket tunnels through the confining potential. As
time goes on, more of the wavepacket ”leaks” out of the well. The real part of the wavefunction is
displayed.

107

Quantum Visualizations

k

T

Figure 6.5: Momentum-time plot of a Gaussian interacting with a potential well with a small
barrier surrounding it. The quantity displayed is ∣� (k, T) ∣2. The horizontal axis is momentum
and the vertical axis is time. Initially (i.e. at the bottom of the plot) there is a single momentum
component due to the wavepacket moving to the right—this is the dark red band just right of
center. During the interaction of the wavepacket with the well, a well-defined mode builds up and
results in the higher momentum sidebands annotated with the arrows. See figure 4.10 for selected
frames from the animated sequence in the position domain.

108

Figure 6.6: Image plot of a frame in the time-evolution of the angular momentum of a wavepacket,
initially at rest, and evolving in a boundary defined by Archimedes’ spiral. This image was created

by plotting ∣Lz⟨x, y∣ ⟩ (T) ∣ at T = 3.33 where Lz = −iℏ
(

x ∂
∂y − y ∂

∂x

)

.

109

Quantum Visualizations

Figure 6.7: Image plot of a frame in the time-evolution of a wavepacket, initially at rest in the
center of the figure, evolving in a potential well bounded by an epicycloid. The probability density,
∣⟨x, y∣ ⟩ (T) ∣2 at T = 3000 is displayed.

110

Figure 6.8: Image plot of a frame in the time-evolution of a wavepacket, initially at rest in the
center of the figure, evolving in a potential well bounded by an epicycloid. The probability density,
∣⟨x, y∣ ⟩ (T) ∣2 at T = 2100 is displayed.

111

Quantum Visualizations

Figure 6.9: Image plot of a frame in the time-evolution of a wavepacket, initially at rest in the
center of the figure, evolving in a potential well bounded by an astroid. The probability density,
∣⟨x, y∣ ⟩ (T) ∣2 at T = 3500 is displayed.

112

Figure 6.10: Image plot of a frame in the time-evolution of a wavepacket, initially placed at the
center of the figure and moving to the left, evolving in a potential well bounded by a stadium
curve. The probability density, ∣⟨x, y∣ ⟩ (T) ∣2 at T = 7600 is displayed.

113

Quantum Visualizations

114

Appendix A

The Wigner 3-j Symbol

As discussed in chapter 3 using the Wigner 3-j symbol can provide a compact way to represent
a complicated expression involving coupling angular momentum. The implementation of the 3-j
symbol in IDL is straightforward and based upon a set of equations motivated and presented in
Edmond’s book, Angular Momentum in Quantum Mechanics [15].

The 3-j symbol is given by
(

j1 j2 j3
m1 m2 m3

)

= (−1)
j1−j2−m3 (2j3 + 1)

−1/2
(j1 m1 j2 m2∣j1 j2 j3 −m3) (A.1)

where the last term on the right-hand side of the equation above is given by

(j1 m1 j2 m2∣j1 j2 j m) = �m1+m2,m

[

(2j + 1) (j1 −m1)!

(j1 + j2 + j + 1)! (j1 − j2 + j)!

]1/2

×
[

(j2 −m2)! (j +m)! (j −m)!

(−j1 + j2 + j)! (j1 +m1)! (j2 +m2)!

]1/2

×
∑

s

(−1)s+j1−m1
(j1 +m1 + s)! (j2 + j −m1 − s)!

s! (j1 −m1 − s) (j −m− s)! (j2 − j +m1 + s)!

function wigner_threeJ,j1,j2,j3,m1,m2,m3

compile_opt idl2,hidden

jj1 = j1 & jj2 = j2 & jj3 = j3

mm1 = m1 & mm2 = m2 & mm3 = m3

t1 = (m1+m2+m3) ne 0

t2 = (j1+j2-j3) lt 0

t3 = (j1+j3-j2) lt 0

t4 = (j3+j2-j1) lt 0

t5 = 0

if (t1 or t2 or t3 or t4 or t5) then return,0.D0

m1 = double(m1) & m2 = double(m2) & m3 = -1.0*double(m3)

j1 = double(j1) & j2 = double(j2) & j3 = double(j3)

term1 = ds_delta(m1+m2,m3)

term2 = (2.0*j3+1)*nfact(j1+j2-j3)*nfact(j1-m1)*$

115

The Wigner 3-j Symbol

nfact(j2-m2)*nfact(j3+m3)*nfact(j3-m3)

term2 = term2/(nfact(j1+j2+j3+1.0)*nfact(j1-j2+j3)*$

nfact(-j1+j2+j3)*nfact(j1+m1)*nfact(j2+m2))

coef = term1*sqrt(term2)

sum = 0.0

nbig = 200

for s = 0,nbig-1 do begin

z = double(s)

den1 = j1-m1-z & den2 = j3-m3-z & den3 = j2-j3+m1+z

if den1 ge 0.0 and den2 ge 0.0 and den3 ge 0.0 then begin

num = nfact(j1+m1+z)*nfact(j2+j3-m1-z)

den = nfact(z)*nfact(den1)*nfact(den2)*nfact(den3)

sum = sum+((-1.0)ˆ(z+j1-m1))*num/den

endif

endfor

coef = coef*sum

newcoef = ((-1.0)ˆ(j1-j2-m3))*(1.0/sqrt(2.0*j3+1))*coef

coef = newcoef

j1 = jj1 & j2 = jj2 & j3 = jj3

m1 = mm1 & m2 = mm2 & m3 = mm3

return,coef

end

This function requires the function NFACT which is the recursive factorial function listed
below.

function nFact,n

; Recursive factorial function written by J.Copley

if (n gt 1) then begin

z=double(n)*nFact(double(n-1))

endif else begin

z=1

endelse

return,z

end

116

Appendix B

The Simple Harmonic Oscillator
Eigenfunctions

The eigenfunctions in position-space for the simple harmonic oscillator are straightforward to
implement in IDL. Since they involve Hermite polynomials, we first must implement a function
that calculates the Hermite polynomial of any order. The recursion relationship for Hermite
polynomials is

Hn+1 (x) = 2xHn (x)− 2nHn−1 (x) . (B.1)

Knowing that H0 (x) = 1 and H1 (x) = 2x, we can use the recursion relationship above to calculate
any higher order Hermite polynomial. The IDL function that computes the ntℎ-order Hermite
polynomial is HERMITE.PRO listed below. The input parameters are n, the order of the polynomial,
and x, the point or points at which to evaluate the polynomial. It is useful to verify that the
IDL function’s output matches some of the higher order polynomials such as H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12, and H4(x) = 16x4 − 48x2 + 12.

function hermite,n,x

compile_opt idl2,hidden

; This function returns the Hermite polynomial

; of order n and defined at argument values of

; x. These are the "Physicists’ Hermite Polynomials"

nx = n_elements(x)

m = (1+n) > 2

h = fltarr(m,nx)

h[0,*] = fltarr(nx) + 1.0

h[1,*] = 2.*x

if n le 1 then return,reform(h[n,*])

for j = 1,n-1 do h[j+1,*] = 2.*x*h[j,*] - 2.*j*h[j-1,*]

return,reform(h[m-1,*])

end

117

The Simple Harmonic Oscillator Eigenfunctions

The eigenfunctions for the simple harmonic oscillator are given by

⟨x∣n⟩ =
(m!0

�

)1/4 1√
2nn!

e−
1

2
m!0x

2

Hn (x
√
m!0) (B.2)

where ℏ!0/2 is the ground state energy for the oscillator and m is the mass of the particle. This
expression can be converted into an IDL function using the HERMITE.PRO function. The function
is called SHO_EIGENSTATES.PRO. Required input parameters are the oscillator level n, the spatial
coordinates at which to evaluate the function x, the mass of the particle m, and the oscillator
frequency wo.

function sho_eigenstates,n,x,m,wo

compile_opt idl2,hidden

b = sqrt(m*wo)

wf = ((bˆ2/!pi)ˆ(0.25))*(1./sqrt((2.ˆn)*factorial(n)))*$

(exp(-0.5*(b*x)ˆ2))*hermite(n,b*x)

; Note that you must return a complex result if this

; is to be used by a routine that solves the Schrodinger

; equation.

return,complex(wf,0d*wf)

end

118

Answers to Selected Exercises

Answer (Ex. 2) — The fifth eigenvalue changes by less than 1% for values of Nx greater than
about 95.

Answer (Ex. 6) — The wavefunction components move faster in time when compared with the
motion of the probability density. The reason why the wavefunction components move faster is
based on the fact that increasing the barrier height lowers the transition energy between the lowest
two eigenstates, ΔE = E1 −E0, but increases the absolute values of the ground state E0 and first
excited state E1 energies. As given in equations 2.17 and 2.18, we note that the time-dependence
of the wavefunction depends on E0 and E1 and the time-dependence of the probability density
depends on the difference between these two, ΔE = E1−E0. Therefore, as the barrier increases, the
wavefunction oscillations increase in frequency but the probability density decreases in frequency.

Answer (Ex. 9) — Since the potential energy can be expanded

V (�) =
V3
2

(1− cos3�)

=
V3
2

(

1−
(

1− 1

2
(3�)2 ⋅ ⋅ ⋅

))

≃ 1

2

(

9V3
2

)

�2

then the approximate Schrödinger equation can be written as

−ℏ
2

2I

∂2

∂�2
⟨�∣ ⟩+ 1

2

(

9V3
2

)

�2⟨�∣ ⟩ = E⟨�∣ ⟩.

Comparing this to the Schrödinger equation for a simple harmonic oscillator

− ℏ
2

2meq

∂2

∂x2
⟨x∣ ⟩ + 1

2
keqx

2⟨x∣ ⟩ = E⟨x∣ ⟩ (3.4)

we have for the equivalent mass meq = I and the equivalent spring constant keq = 9V3/2. Since the

oscillation frequency for this simple harmonic oscillator is !0 =
√

keq/meq then the ground-state

energy is given approximately by E0 = ℏ

√

9V3

2I

119

Answer (Ex. 10) — The matrix element ⟨3m+ l∣cos 6�∣3n+ l⟩ is 1
4 (�m,n+2 + �m,n−2). The final

Hamiltonian is the same as equation 3.13 with the following term added

V6
4

(2�m,n − �m,n+2 − �m,n−2) .

Answer (Ex. 11) — The lowest eigenvalue decreases by a factor of
√
2 when you double the

moment of inertia. See equation 3.18.

Answer (Ex. 13) — The tunneling energy ΔE01 depends approximately exponentially on the
barrier height (ΔE01 ∼ exp (−cV3)) for large V3, making it an excellent way to extract the barrier
height from a tunneling measurement.

Answer (Ex. 18) — First we note that the potential can be expressed in terms of the spherical
harmonics as

V (�) = 4V4

(

2

15
+

2

21

√

4�

5
Y2,0 −

8

25

√

4�

9
Y4,0

)

. (3.36)

The final result is

Hℓ,ℓ′,m,m′ =

(

Bℓ (ℓ + 1) +
8V4
15

)

�ℓ,ℓ′�m,m′ +

8V4
21

√

4�

5
(−1)

m′

(

5 (2ℓ+ 1) (2ℓ′ + 1)

4�

)1/2(
ℓ′ 2 ℓ
0 0 0

)(

ℓ′ 2 ℓ
−m′ 0 m

)

−

32V4
35

√

4�

9
(−1)

m′

(

9 (2ℓ+ 1) (2ℓ′ + 1)

4�

)1/2(
ℓ′ 4 ℓ
0 0 0

)(

ℓ′ 4 ℓ
−m′ 0 m

)

Answer (Ex. 20) — −43.5 ≤ x(Å) ≤ 14.5 and 0 ≤ t(ps) ≤ 3.26.

Answer (Ex. 27) — As the width of the wavepacket increases, the penetration depth gets smaller.
In fact, in the limit of a plane wave (� → ∞), there will be no penetration.

Answer (Ex. 30) — x = ℏ√
m�

X and y = ℏ√
m�

Y .

Answer (Ex. 31) — a = 2.04Å, w = 1.02Å, and s = 4.08Å.

120

Bibliography

[1] IDL stands for the Interactive Data Language, a product from ITT Visual Information Solu-
tions, http://www.ittvis.com.

[2] Richard W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visual-

ized Examples, Oxford University Press (1997).

[3] Sigmund Brandt and Hans Dieter Dahmen, The Picture Book of Quantum Mechanics,
Springer-Verlag (2001).

[4] John S. Townsend, A Modern Approach to Quantum Mechanics, McGraw-Hill, Inc. (1992).

[5] MATLAB is a product from the Mathworks, http://www.mathworks.com.

[6] R.M.Dimeo, Application Development in IDL I, available for download at ftp://ftp.ncnr.
nist.gov/pub/staff/dimeo/intro_to_idl.pdf.

[7] David Fanning, IDL Programming Techniques, 2nd Edition, available from http://www.

dfanning.com.

[8] http://www.ncnr.nist.gov/staff/dimeo.

[9] A. Goldberg, H.M. Schey, and J.L. Schwartz, Computer-Generated Motion Pictures of One-

Dimensional Quantum-Mechanical Transmission and Reflection Phenomena, Am. J. Phys.
35, 177 (1967).

[10] http://cow.physics.wisc.edu/˜craigm/idl/idl.html

[11] B.J. Riel, An Introduction to Self-Assembled Quantum Dots, Am. J. Phys. 76, 750 (2008).

[12] G.E. Kimball and G.H. Shortley, The Numerical Solution of Schrödinger equation’s Equation,
Phys. Rev. 45, 815 (1934).

[13] D.L. Kaufman, I. Kosztin, and K. Schulten, Expansion Method for Stationary States of Quan-

tum Billiards, Am. J. Phys. 67, 133 (1999).

[14] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics Volume One, pp. 457-464,
John Wiley & Sons (1977).

[15] A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press
(1996).

[16] A. Goldberg, H.M. Schey, J.L. Schwartz and R. Whiddon, Quantum Physics Series, Films

1-10, reviewed by K. Gottfried in Am. J. Phys. 46, 315 (1978).

121

[17] B.E. Warren, X-Ray Diffraction, Dover Publications (1990).

[18] A. Askar and A.S. Cakmak, Explicit integration method for the time-dependent Schrodinger

equation for collision problems, J. Chem. Phys. 68, 2794 (1978).

122

Index

1D harmonic oscillator, 16
2D Hamiltonian, 4, 79
2D isotropic harmonic oscillator, 26
3-fold rotor Hamiltonian, 37
3-fold rotor matrix elements, 38

Archimedes’ spiral, 88

billiard balls, 95
Bragg’s Law, 70

cardioid potential, 32

discrete variable approximation, 2, 13, 24

Expansion Method, 16, 27

free-rotor eigenfunctions, 38

harmonic oscillator, 98

probability current, 3

quantum billiards, 27, 85

radioactive decay, 78
repulsive interaction, 95

Schrödinger equation, 3, 13, 54
stadium potential, 27

transition animation, 21, 23
two particle Hamiltonian, 4

virtual/metastable states, 73

wavepacket collisions, 92
Wigner 3-j symbol, 48, 115

123

Front cover: Branches are the eigenvalues calculated from a numerical solution of the Mathieu
differential equation for a three-fold symmetric potential used to model hindered methyl group
dynamics. The image was created by finding the eigenvalues of a system with both a three-fold and a
six-fold term, varying the amplitudes of the barrier terms and adding the transitions between the first
and second eigenvalues and the fourth and fifth eigenvalues.

Back cover: The images displayed here are the frames from the time evolution of a Gaussian
wavepacket in two dimensions initially at rest constrained to move within a potential boundary given
by an Archimedes' spiral. Though the wavepacket is initially at rest, the spreading and interaction
with the boundary cause the wavepacket to develop angular momentum and the center-of-mass of
the wavepacket moves outward.

