skip to main content NIST Center for Neutron Research NIST Center for Neutron Research National Institute of Standards and Technology
Home Live Data Instruments CHRNS Proposals

Neutron Scattering Studies of Short-Range Order and Atomic Displacements in a Null Matrix 62Ni0.52Pt0.48 Crystal.

José Rodriguez, University of Houston

The best known exception to the Heine-Samson and Bieber-Gautier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, where the phase diagram is similar to the CuAu system. Using the Disk Chopper Spectrometer (DCS) at NIST, we have investigated a Null-Matrix Crystal 62Ni0.52Pt0.48, (62Ni has a negative scattering length, nearly equal in magnitude to Pt). Its composition has therefore been chosen whereby all effects depending on the average lattice scattering vanish. The only remaining contributions to the diffuse scattering are the Short Range Order (SRO) and Size Effect (SE) terms, to be discussed within. Such data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtained the Effective Pair Interactions (EPI) between the several neighbors in the alloy. The results can be used to model the alloy in the context of electronic theory of alloy phase stability, including an evaluation of the potentially important aspect of charge transfer and ionicity.

Back to Seminar Home Page



Last modified 16-November-2005 by website owner: NCNR (attn: )