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Synopsis

Rheology is demonstrated to be a sensitive and quantitative probe of weak attractive forces acting
in concentrated stable colloidal dispersions through comparison of rheology and small-angle
neutron scattering measurements on a model dispersion with added polyampholyte.
Polyampholyte-stabilized dispersions are found to exhibit weak attractions in the form of depletion
forces arising from free polyampholyte in the suspending medium. The depletion potential is
modeled with the Asakura-Oosawa potential and mapped onto the sticky hard sphere potential
to facilitate modeling. Independent validation of the interparticle potential is provided by
quantitative prediction of the measured small-angle neutron scattering spectra. A new
semiempirical predictive model for the low shear viscosity of stable dispersions is proposed and
validated against measurements on model dispersions over a range of compositions. This
rheological constitutive relation provides an improved prediction of the low shear viscosity of
stable mixtures of adsorbing polyampholyte and colloidal particles, and is anticipated to have
broad applicability in modeling and predicting colloidal suspension viscosit20@ The Society

of Rheology[DOI: 10.1122/1.1859792

I. INTRODUCTION

Colloidal particles are incorporated into a wide range of industries and products. A
thorough understanding of dispersion rheology and stability is beneficial for successful
formulation and processing of colloidal dispersions for practical applicafidimmenz
and Rajagopalafl997); Howe (2000 ]. Of particular interest in this work are dispersions
relevant to the photographic industry, where the degree of dispersion directly impacts the
image quality, and the dispersion rheology and stability under high deformation rates is
crucial to successful coating processing. Although the focus of this work is to predict the
dispersion rheology of colloidal dispersions stabilized by polyampholgektin, the
methodology presented here has direct applicability to a broad class of polymer-stabilized
colloidal dispersions.

The rheology and stability of colloidal dispersions are direct reflections of the poten-
tial of interaction acting between the colloifRusselet al. (1989]. The interparticle
forces arising from the addition of polymers include bridging and steric forces due to
adsorption, depletion forces from the dissolved polymer, as well as an electrosteric force
if the polymer is chargedAsakura and Oosawél958; Brady (1993; Buscall et al.
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(1993; Hiemenz and Rajagopaldi997); Likos et al. (2000; Fritz et al. (2002]. Ad-
sorption of polymers on colloidal surfaces in good to theta solvents provides a steric
repulsion between the adsorbed brushes, which imparts colloidal stability. The presence
of free polymer generates an attractive force due to depletion effects that can lead to
gelation or crystallizatiofGastet al. (1983].

In this work, we investigate the influence of gelatin, an amphoteric biopolymer, on the
rheology and liquid phase microstructure of model colloid dispersions with the goal of
quantitatively connecting the interparticle forces to the dispersion properties. The stabi-
lizing effect of gelatin adsorption onto different substrates, both flat and colloidal, has
been studied extensively in the literatfiamiyama and Israelachvilil992; Vaynberg
et al. (1998; Honeet al. (2000; Likos et al. (2000; Eck et al. (2001); Vaynberg and
Wagner(2001); Hone and Howe&2002; Krishnamurthyet al. (2004]. Under conditions
of like net charge on the particles and polyampholyte, the rheology of gelatin-stabilized
dispersions is dominated by the excluded volume interactions arising from gelatin ad-
sorption[Vaynberg and Wagne{2001)], which is similar to other steric-stabilized dis-
persiongMewis and Vermant2000]. In recent work{Krishnamurthyet al. (2004], it
has been shown that the zero-shear viscosities of stable aqueous colloidal dispersions
with added gelatin are predictable using an effective osmotic overlap potential accounting
for the adsorption of gelatin onto the particles. However, systematic deviations from the
model predictions and qualitative differences in rheology upon the addition of substantial
amounts of excess gelatiblone and How&2002] remain unexplained.

In addition, there are discrepancies with potential parameters deduced from small-
angle neutron scatteringBANS) measurements on gelatin-stabilized dispersi@ss-
grove et al. (1998 Likos et al. (2000]. It was observed that the adsorbed layer was
significantly thinner than that determined from dynamic light scatte(idgS) or de-
duced from rheology. The hydrodynamic size of the gelatin-colloid complex determined
from DLS is found to be comparable, but systematically lower, than the size calculated
from rheology. The interparticle potentials used in these previous studies were purely
repulsive potentials arising from steric interactions of the adsorbed layer and electrostatic
repulsions from the net particle charge. It will be shown here that this framework is
inadequate for describing colloid dispersions in the presence of adsorbing polyampholyte.
Rather, accounting for additional weak interparticle attractions arising from the free
polyampholyte can reconcile the observed rheological and neutron scattering data.

An idealized stable mixture of colloids and adsorbing polymer at equilibrium should
not exhibit a depletion attraction due to the free polymer in solution if the free and
adsorbed polymer are in equilibrium. However, it has been shown through measurements
of phase behaviofSnowdenet al. (1991); Smith and Williams(1995] that the unab-
sorbed polymer fraction in a polymer-colloid mixture can induce a depletion attraction
even when the polymer adsorbs. This was attributed to the nonequilibrium nature of
polymer adsorption. Previous studies on gelatin-stabilized dispersions have not consid-
ered depletion interactions arising from free gelatin.

Weak interparticle attractions are expected to increase the viscosity of colloidal solu-
tions as shown theoretically for a dilute square-well fliRergenholtz and Wagner
(1994] and for a dilute sticky hard sphere flUiBussel(1984); Cichocki and Felderhof
(1990; Baxter (1968]. ExperimentsWoutersen and De Kruif1991); Buscall et al.
(1993; Rueb and Zukoski1998] at high colloid concentrations have shown that colloi-
dal attractions increase the low shear rate viscosity. Empirical modeling of experimental
data by Buscalkt al. (1993 shows that a linear increase in the strength of the attractive
interactions results in an exponential increase in viscosity. These existing theories and
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TABLE |. Material properties.

surface
Diameter  potential Density
Batch (nm) (mV) Concentration IEP MriDa) (g/co
Silica 30V25 provided 31 -29 30 wt % 2 2.2
by Clariant Inc. (DLS)
Gelatin Gel-37 provided 28 4.9 100 000 1.3
by Eastman (SANS

Kodak Company

®R,=14+2 from Vaynberget al. (1998.

models for the rheology of colloidal systems with weak attractions provide guidance in
developing a predictive model for polyampholyte-colloid dispersions.

Although the specific goal of this research is to develop a predictive model for the
rheology and stability of colloidal dispersions in the presence of gelatin, the underlying
modeling is expected to have a much broader applicability. The route to achieving this is
through a model for the interparticle potential, which can be used within the framework
of statistical mechanics to calculate the suspension microstructure and rheology. It has
been shown in our previous wofKrishnamurthyet al. (2004)] that an osmotic overlap
potential can be used to semiquantitatively predict the rheology of gelatin-colloid mix-
tures. Here, we extend this formalism by incorporating the osmotic depletion interaction
of free polymer using the model ¢Asakura and Oosawd 954, 1958]. We propose a
new predictive model for the zero-shear viscosity of dispersions with weak attractive
interactions applicable over the entire concentration range. Validation is shown through
quantitative comparison of rheology and SANS measurements.

Il. EXPERIMENTAL

Colloidal silica nanoparticles, obtained from Clariant Inc., and lime processed deion-
ized gelatin from Eastman Kodak, were used in this work. The samples and experiments
have been described more extensively in previous Wirishnamurthyet al. (2004 ].

The relevant properties of the samples are provided in Table I. In preparing the samples,
gelatin was soaked in sodium acetét®Ac) buffer for 1 h at room temperature and then
gently stirred into a homogeneous solution at 40 °C for 1 h to obtain a 10 wt % gelatin
stock solution. As the majority of experiments were performed in 0.01 M NaAc buffer,
the silica dispersion as received was dialyzed against a bath containing 0.01 M NaAc to
control thepH at 8.0 and ionic strength at 10 mM prior to preparation of the gelatin-silica
mixtures. The resultant stock particle dispersion contained 30.33 wt % silica. Silica-
gelatin mixtures were prepared by diluting the stock particle solution with NaAc buffer
and then adding the required amount of gelatin stock solution to obtain the desired final
composition. The concentrations of the components in the aqueous phase are reported on
a silica-free basis. All mixtures were incubated at 40 °C for 16 h prior to experimenta-
tion.

Rheological studies were performed on a Rheometric Scientific stress-controlled rhe-
ometer (SR-5000 equipped with a couette celll7 mm outer diameter and 16.5 mm
inner diameterat 40+0.1 °C. Samples were enclosed in a low viscosity mineral oil to
avoid drying according to a protocol previously discusg&dynberg and Wagner
(2001)]. The rheological protocol consisted of descending and ascending stress sweeps in
series. All reported viscosities are time independent, reproducible, and independent of



478 L.-N. KRISHNAMURTHY AND N. J. WAGNER

tool geometry. Dynamic oscillatory measurements demonstrated no measurable elasticity
and there was no evidence of slip or yielding for any of the samples.
Intrinsic viscosity measurements for gelatin and the gelatin-colloid complexes were
performed using a calibrated Canon-Ubbelohde visconibigt and L62 at 40+0.1 °C.
The density of these solutions was measured using an Anton-Paar densitDidter
35) to extract the shear viscosity from the capillary measurements of kinematic viscosity.
SANS measurements were performed on the samples at the NG3 SANS line at Na-
tional Institute of Standards and Technold@{tST). Samples were held at 40+£0.1 °C in
1 mm cells. Thermal neutrons of 6 A and 14.7% half-width dispersity were used at
detector distances of 3.8 m and 13 m. The measured scattering intensities were reduced
to the absolute scale using the standard NIST procedure.

Ill. THEORY

A. Zero-shear viscosity of near-hard sphere dispersions with weak
attractions

The starting point for the theoretical development of a model for the rheology of
weakly attractive colloidal systems is that of hard-sphere dispersions. Einstein derived the
exact dilute limiting form for the relative viscosit{7,o=7suspensioh medium that was
extended by BatcheldBatchelor(1977, 1983] to include interparticle interactions. The
expansion written in terms of volume fraction of colloids is

o=1+([7lp)¢+ku([7]p)*¢*. (1)

This expression is valid until volume fractions ¢f~0.1. In the abovep is the particle
density,[ #] is the intrinsic viscosity of the particles amkg the Huggins coefficienf.n]

was calculated by Einsteifi906 to be 2.5p andk, was calculated to be 0.948er-

genholtz and Wagne1994] for Brownian hard-sphere dispersions.

At higher concentrations, no exact theoretical models exist for even simple hard
spheres. To within a reasonable degree of accuracy, phenomenological models of Krieger
and Dougherty(1959 and Quemad#1977, both of which incorporate one parameter,
the maximum packing fractioty»,), have been shown to be reasonable approximations
of the relative zero shear of hard-sphere dispersiafi§(¢#)]. In this study, we employ
the following relation:

HS ¢\

Tro (¢):<1_ ) . (2)
d’max

An alternate model based on the empirical Dolittle equation has been correlated to the

zero-shear viscosity measurements on model hard-sphere dispef€ibesg et al.

(20021:

, 0.9¢¢,
Mo (B) = m(l +0.225 exp (—max)) : ©)
¢max_ ¢’
where 7/, is the relative high-frequency viscosity of a hard sphere dispersion given by:

3
, 1+§¢[1+¢(1+¢-2-3¢Z)]
' /e
oo = = . (4)
' Tmedium 1~ PL+p(l+¢p- 2-34’2)]
Finally, we note that micromechanical models with various degrees of approximation for
many body thermodynamic and hydrodynamic interactions have been proposed and
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tested against data for the zero-shear viscosity of hard sphere dispersions, as well as
simulations[Brady (1993; Lionberger and Russ¢2000].

Various author$Russel(1984; Cichocki and Felderhofl990; Buscallet al. (1993]
have extended the theories for hard-sphere dispersions to colloidal dispersions with weak
attractions. Russd|1984) has proposed an exact theory for viscosity of systems with
weak attraction at low colloid densities. The attractive part of the potential is character-
ized by 7, the “sticky parameter” for the Baxter potentj@axter(1968]. The presence
of weak attractions does not affect the intrinsic viscosity, but modifies the Huggins
coefficient. Cichocki and Felderh¢f990 numerically calculated the correction to té
term in the viscosity expansion to be

nr0:1+2_5¢+<5.9 +17'9>¢2. (5
b

Equation(5) is exact for dilute dispersions of Brownian hard spheres interacting via the
sticky hard-sphere potential. However, it can be used to describe more realistic potentials
through equating the second virial coefficients to determipdRueb and Zukoski
(1998]. Extensive numerical results also exist for e coefficient for particles inter-
acting with the square-well potentiglBergenholtz and Wagn&i994)].

At higher colloidal concentrations, semiempirical corrections to the hard-sphere equa-
tions have been proposed. Buscell al. (1993 fit data for low shear viscosity of a
colloidal dispersion with a nonadsorbing polymer to a phenomenological equation of the

form:
WFKexp(—%). (6)

The minimum in the interparticle potentibl, was estimated from independent measure-
ments of free polymer properties. The parametés,a) was fit to the data and was
expected to depend on volume fraction and particle size. In the manuscript, it was sug-
gested that the terrK should be the relative viscosity of a hard-sphere system. The
experimental data validated the exponential dependence on well depth.

To date, there are npredictive theories for the low shear viscosity valid over the
entire range of volume fractions for colloidal dispersions with attractive interactions.
Here, we develop a semiempirical predictive model by matching the exact dilute limiting
expansion Eq(5) to a dilute limiting expansion of the phenomenological model of
Buscallet al. [Eq. (6)], thereby deriving the parametef¢,a). The exponential of the
well depth can be related to the last term in Eg).as follows. DefiningK to be 7%’ for
hard-sphere dispersion and expanding @& for low volume fractions yields:

a(=Uy)
Trolgo= (1 +2.5p+ 5-9¢2)9XP( KT £ ) . (7)
Comparing this to Eq(5) yields (correct to the ordee? terms:
U 1.9¢%
lim exy{— u) 01 +;9¢. (8)
$—0 KT Th

This result is not surprising as the sticky parametgs also related to the exponential of
the well depth in typical mappings used to analyze the scattering, which will be shown
shortly. Then, the predictive semiempirical equation for the zero-shear viscosity of col-
loidal dispersion with weak attractive interaction becomes
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2
1.9¢ ) ©

o= 77:408(4/’)(1 +
To

For use at higher packing fractions, various models for the hard-sphere viscosity are
available, such as that given by E@), which requires an additional parameter, the
maximum packing fractionp,,. For the dispersions under consideration here which
have a long-range attractive interactigelative to the particle sizethe value ofday
=0.58, as predicted from mode coupling calculations of the colloidal glass transition in
square-well dispersion by Dawse al. (2001) for wide well widths.

The value ofr, can be calculated for a given potentid(r) by matching the second
virial coefficientsB,(T), defined generally adRusselet al. (1989; McQuarrie(2000]:

B,(T) =27 f (1 - e VKT 2gy (10)
0

For the Baxter sticky hard-sphere potentiRussel(1984); Menon et al. (1991)], this
becomes

Bo(T) _ -4

=1-—-. 11
B;'S 4Tb ( )

For modeling SANS spectra, we employ a square-well potential. For a square well of
depthU, and widthA, the second virial coefficient {gvlenonet al. (1991 ]

By(T) N ((0'+ A)3 )
=1-(eYWKT-|{—] -1 12
B ( ) - (12
In the aboveBE‘S: 27a>/3 is the second virial coefficient for hard sphefb&Quarrie

(2000].

B. Small-angle neutron scattering

The intensity of coherently scattered neutrdifg) for a system of monodisperse
spheres igHansen and McDonal¢lL986; McQuarrie(2000 ]

1(a) = ¢V ApSP(@)S(a), (13

whereV, is the volume of a particledp is the difference in scattering length densities
between the colloid and the mediuf(q) is the form factor of a single scatteré(q)
accounts for the interparticle structure, agd4m/\, sin(6/2) is the magnitude of the
scattering vector. The tern(ﬁVpApg) can be grouped into a single prefactgr

The form factorP(q) gives information on the shape and size of a single scatter, while
the structure facto®(q) is the Fourier transform of the pair distribution functigfr) and
depends on the interaction potential. Thus, SANS provides another sensitive probe of the
interparticle interactions.

The form factor of a homogeneous sphere of radii2 is given by

3(sin(qo/2) - qo/2 cosqoi2)) |?
(qo/2)® '

Figure Xa) shows the fit of this form factor corrected for instrument smearing and
polydispersity to measurements on colloidal silica dispersi@s$ nm radius and 8%
polydispersity in D,O at a low concentration. Figure(d shows the predicted form
factor of the silica particles dispersed in 5 mg/ml gelatin in aqueous buffer assuming the

P(a) = f(q)?= (14)
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FIG. 1. (a) Form factor: Comparison of measured form factor with the calculated valu€lBgfor silica in
D,0. (b) Form factor: Comparison of measured form factor with the calculated valu¢lBgassuming the
scattering is from the silica particlegs;;.;=0.009,T=40 °C, and gelatin is 5 mg/ml.

scattering is only from the silica particles and using with the same parameters as those in
Fig. 1(a), compared against measurements. The consgaior scattering has been cal-
culated using the reported values of scattering length dengRiezronet al. (1992);
Cosgroveet al. (1998; Likos et al. (2000] given in Table Il. The calculated and best-fit
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TABLE II. Scattering length densities of individual components.

ps (A7)
Gelatin 3.6E-07
Water -5.6&-07
Silica 3.4E-06

values are in good quantitative agreement and are within the uncertainty in the reported
and calculated parameters. Therefore, it can be concluded that the dominant contribution
to the SANS comes from the silica particles in aqueous mixtures of silica with gelatin;
i.e., under the conditions here, the adsorbed gelatin is essentially transparent to the neu-
trons. This result is consistent with the magnitudes of the scattering length densities and
solution concentrations, and simplifies the analysis of SANS from more concentrated
solutions.

The potential of interaction is related to the pair density distribution function through
the Ornstein-Zernike equatidilansen and McDonaltll986; McQuarrie (2000 ]

h(r):c(r)+pf c(r =r")h(r")dr, (15

where h(r)=g(r)—1 is the total correlation function anclr) is the direct correlation
function. The Percus-Yevick relation is used to close this equation connetting g(r)
and the pair potential

_ Cand YD
c(r)—g(r)(l ex;< KT )) (16)

Thus, given the potential of interactiod(r), Egs. (15 and (16) can be used to
determine the pair density distribution functigfr), which is the Fourier transform of the
structure factoiS(q)

Sig)=1 +pf e (g(r) - Ddr. (17)

The above equations are used to predict structure factors for hard-sphere dispersions.
For modeling, the effect of an attractive square-well interaction, a perturbation solution
proposed by Menoet al. (1991), is employed. These structure factors are a function of
the square-well deptbly and well widthA, valid for A/oc<5%,

Sg) = (18

1
A%(q) +BXq)’
where

M} . ﬁ[l—f“*)] iﬂ} 19

AlQ =1+ 12(0{ a[
q o 12 ¢



INFLUENCE OF WEAK ATTRACTIVE FORCES 483

_ 1 sin(g) | 1-cogq) 1 sin(@ | A |1-cogq)
andB(q)_lzw{a[Zq E = F }Jrﬁ[q q } 12[ q ”
(20)

The parameters, B, and\ are determined from the potential parameters and colloid
diametero volume fractione. In the above) is the solution to the quadratic equation

[1+3)
S 2/ e Me (21)
T (1-0)? (l-w) 12°

w=¢{0(1+%)}3, (22)

eUolkT, (23

AT

where

and

12{ —
o

The other two functions in the structure factor can then be calculated from

1+ 2w-No(l-w)

a 1-0) , (24
and
_— 3w+ o(l-o)
T 2(1-w)? (25

The corrections to the structure factor for particle size paucidispelrSityqi(a)]
were made according the procedure described by Kotlarchyk and (@B&Bs.

(@)l

(f(@*
Finally, the calculated scattering intensity for dispersions of polydisperse spheres are

also corrected for the instrument smearing by convoluting with a normal distribution

N(g—dp), the width of which is given by the full width at half maximufRWHM) of the
incident neutrons as shown in

Soolyaid@) =1 + (S@-1). (26)

1(do) = f 1oP(0)Spoyaid AN(QG = o)da. (27)
This “smeared” intensity can be compared directly with the measured intensity.

C. Potential of interaction

In this work, we hypothesize that the free unabsorbed gelatin leads to a depletion
attraction. Asakura and OosawE954, 1958 proposed the depletion potential for dilute
colloidal spheres dispersed in an idealized polymer solution. The total potential is a sum
of the electrosteric repulsion due to adsorbed polyamphdlgteshnamurthyet al.
(2004)], which is modeled as an osmotic overlap potential, and the Asakura-Oosawa
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FIG. 2. Osmotic potential witho=31 nm, L=15.5 nm, I1ye/5i=5000 Pa, attractivélye,i=450 Pa andr,
=15 nm. It is assumed that the adsorbed layer is incompressible, hence the potential diverges at

potential for depletion arising from the unabsorbed, or “free” gelatin. The functional form
of this potential for two colloids with diameter interacting with adsorbed polymer of
layer thicknesd. and a free polymer of radius of gyratié providing the depletion, at

a center-to-center separation distands

* r<oc+L
|
u(r) = Hg\el?artﬂ:voverlap ctrtL<r<o+2L 29
- Hgglzltinvdepletion ot+2L<r<oc+2L+ 2Rg
0 r>o+2L+2R,,
where Hg‘ég{ﬁf is the osmotic pressure of gelatin in the overlap layer contributing to
repulsion an gg.eatm is the osmotic pressure of free gelatin providing the attraction. The

volume of the overlap layeV e iapis given byVoyerap= mo(L—-H/2)? and the volume of
the depletion layeW yepieioniS given by

47R3 3r rs
Vdepletion™ 3Rg 1- + 3| (29)
2(5+Rg> 16<2+Rg)
2 2
The form of the potential is shown in Fig. 2. The repulsive part of the potential can be

further modeled using Barker Henderson perturbation theory to map onto an effective
hard-sphere dispersion with diamef2i{Barker and Hendersof1967a, b], yielding:
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FIG. 3. Comparison of structure factor for the osmotic overlap model with depletion attrafEqn&28)] from
the solution of the Percus-Yevick equatidigs. (15) and(16), solid line] compared with the model of Menon
et al. (199) [Egs.(18)—(25)] using the effective hard-sphere diameter f). Core diameter=31 nm, corona
thickness=15.5 nm with 5000 Pa osmotic pressure in the layermaati0.25.

2L
D=o+ fo (1 - eXp{— %’(Anggg:;m - H/2)2} >dH, (30)
whereH is the surface to surface separation. The effective volume fraction is calculated
from the effective diameter agqx= ¢ d D/ 0)>.

This final conversion to a Baxter sticky hard-sphere model is performed to make
rheological predictions and the corresponding square well for predictions of the SANS.
The mapping is performed by equating second virial coefficients using(Ejs{12). As
all of the parameters in the potential are independently measured, predictions of the
zero-shear viscosity and SANS intensity can be directly compared against experiments
without fitting parameters.

The structure factor for the full attractive potential could be directly calculated from
Egs.(15) and(16), thus avoiding the mapping to the square-well potential. However, the
perturbative solution is accurate for the parameters under exploration here and is much
more convenient mathematically. The accuracy of the perturbation solution is shown in
Fig. 3 as a plot of the exact solution of the osmotic potential with attraction for mono-
disperse systemigalculated from Eqs(15) and (16)] and the perturbative solution of
Menon et al. [Egs. (18)—(25)] for a core diameter=31 nm, corona thickness=15.5 nm,
with 5000 Pa osmotic pressure in the layer, apd0.25 (these represent typical condi-
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FIG. 4. Measured zero-shear relative viscosities for silica in gelatin vs model predictions at 40 °C, 10 mM salt,
and pH 8 [Krishnamurtyet al. (2004]. The solid line is Eq(2) and the dashed line E@3), both with the
effective hard sphere size determined from the osmotic overlap potential ai@8Edrhe uncertainty in data

is of order of the symbol size.

tions for our system As seen from Fig. 3, the simpler perturbation calculation agrees
well with the exact calculation. Hence, this perturbative solution will be used for further
analysis.

IV. RESULTS AND DISCUSSION
A. Effective hard-sphere modeling

The zero-shear viscosities of mixture of silica and gelatipttin 10 mM sodium
acetate buffer at 40 °C are shown in Fig. 4. As shown previoliKljshnamurthyet al.

(2004)] a substantial Newtonian plateau is evident for all samples and the uncertainty in
the measurements is on the order of the symbol size. It is readily apparent that the
adsorbed gelatin greatly increases the effective hard-sphere volume fraction of the silica,
as the zero-shear viscosity diverges around 10 vol % silica, while for hard spheres the
divergence is around 58%. Note that the divergence is not due to bridging or other
phenomena-as rheological measurements show a significant Newtonian plateau without
measurable elasticity. SANS measurements—discussed next—confirm that the particles
are stable and dispersed as individual particles.

Figure 4 also shows the predictions of a purely repulsive osmotic overlap potential
using Eq.(28) with 5200 Pa osmotic pressure of gelatin in the adsorbed layer of thickness
15.5 nm, yielding an effective diameter Bf=59 nm. The effective volume fraction is
used in Eq(2) with ¢,,=0.58 to predict the zero-shear viscosity. Notice that the cor-
rection for gelatin adsorption dominates the predictigie ratio ofD/o~1.9). The
prediction of the correlation suggested for hard spheres by Ceeaf (2002 demon-
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FIG. 5. Measured SANS for silica in gelatin vs model predictions at 40 °C, 10 mM saltpeh@. The solid
line is the effective hard-sphere prediction. The intensities are shifted vertically for clarity.

strates poorer agreement. Thus, the systematic deviations with experiment for predictions
based on an effective hard-sphere size are not a consequence of the choice of model for
the hard-sphere viscosity. Furthermore, adjusting the maximum packing frdetin

cannot improve the comparison.

As shown, the osmotic overlap modehderpredictsthe zero-shear viscosities. The
same trend is also observed for the Huggins coefficient. The hard-sphere limit for the
Huggins coefficient is 0.94@Bergenholtz and Wagn&i994], while that measured for
our gelatin-coated system is 5.8+ 3 and that reported by Vaynberg and Wa@04y is
6+2, which indicates the presence of additional interparticle interactions. As defined by
Eq. (1), ky will not be affected by the increased hydrodynamic diameter due to gelatin
adsorption if the adsorption solely leads to an increased effective hard-sphere interaction.
Note, however, that attractions as well as repulsions incriasdove the hard-sphere
value [Bergenholtz and Wagn€1994], such that rheology alone will not be able to
distinguish the nature of deviation from the hard-sphere behavior.

Figure 5 shows the results of SANS measurements for a series of silica volume
fractions at the same gelatin concentration as the rheology (estg/ml free gelatin
The hard-sphere structure factor is calculated from E4S. and (16) (i.e., the Percus-
Yevick-Ornstein-Zernike equation for hard spherasing the effective hard-sphere di-
ameterD calculated from Eq(30). The measured scattering curves have been shifted
vertically for clarity.

It can be seen from Fig. 5 that the effective hard-sphere model is able to predict the
SANS measurements at low volume fractions of silica. However, at high volume frac-
tions, the predicted scattering intensities are orders of magnitude lower than the measured
intensities at small scattering vectors. The forward scattering is related to the osmotic
compressibility of the dispersiofiMcQuarrie (2000], such that the observed trends in-
dicate that that the dispersion’s osmotic pressure increases less rapidly with concentration
than predicted by the effective hard-sphere model. Note that the particle polydispersity
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and instrument smearing have been properly accounted for in comparing theory and
experiments. Consequently, the discrepancy indicates systematic deviations from hard-
sphere behavior.

Comparison of the effective hard-sphere model predictions to measurements of vis-
cosity and microstructure clearly indicates systematic deviations. Further, corrections to
the thermodynamic and rheological effective hard-sphere sizes must be in opposing di-
rections to quantitatively match the data. This is not feasible within the framework of a
simple repulsive interaction. However, the physical observations can be reconciled if
weakly attractive interparticle interactionare present in the system. Weak attractions
will increase the zero-shear viscosity but lower the osmotic pre$ancehence, increase
the forward scattering(0)]. The weak attractions are postulated to arise from depletion
interactions due to the presence of free gelatin in the colloid—gelatin mixture, similar to
the observations of Snowde al. (1991). The Asakura—QOosawa potential is employed
to make improved predictions of the dispersion rheology and equilibrium structure. For
systems without the free polymer, attractions may also be a consequence of some inher-
ent “stickiness” between adsorbed gelatin molecules on different partiubés that the
gelatin temperature of gelatifye~37 °C for gelatin at these conditions

B. Including depletion interactions

The following procedure is followed to predict the zero-shear viscosity and SANS
measurements for the potential including osmotic overlap and depletion attractions:

(1) The effective hard-sphere diameter resulting from steric repulsion is calculated from
the adsorbed amount and corona thickness usindg 3.

(2) The effective volume fraction is calculated by rescaling the colloid volume fraction
with (D/o)3 to account for the excluded volume arising from the adsorbed gelatin.

(3) The depletion potentidl(r) is calculated usings=Ry and the free gelatin concen-
tration in the medium to obtaibljer, [Ed. (28)].

(4) The second virial coefficient of the Asakura-Oosawa potential can be equated to the
Baxter sticky hard-sphere model to determigd Eqs. (10) and(11)].

(5) The stickiness parameter and effective hard-sphere size are used to predict the zero-
shear viscosity with the proposed modEq. (9)].

(6) The square-well potential parametdg(A=Ry) is calculated from matching the sec-
ond virial coefficient to that of the Baxter potenti&(q) is predicted using the
SHSM model of Menoret al. [Eqgs.(18)—(25)] andI(qg) from Eq. (27).

C. Effect of colloid concentration- fixed gelatin 5 mg/ml

The procedure outlined above can be used to predict the zero-shear viscosity of
gelatin-stabilized colloids shown in Fig. 4. The potential parameters, e.g., the osmotic
pressure of free gelatin and the radius of gyration of gelatin, are specified from previous
studies. The osmotic data presented in our previous \Worishnamurthyet al. (2004)]
have been refit to get better correlation for the osmotic pressure of gelatin at low con-
centrations. The osmotic pressure is fit to the form

II(x,pH) = Ax+ BxpH+ Cx225, (31)

wherex is the mass fraction of gelatin. The fit parameters A, B, and C are tabulated in
Table Ill. The osmotic pressure of free gelatin at the condition of interest
(5 mg/ml,pH 8) is ~200 Pa.
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TABLE IIl. Osmotic pressure paramet¢Ey. (31)] for gelatin.

Parameter Valu¢Pa
A -4.21x 10
B 9.86x 10°
C -2.62x 10°

Vaynberget al. (1998 measured the radius of gyration of gelaRg=14+2 nm using
SANS at the conditions of interest. Equating the second virial coefficients fronfilB).
and(11) gives a range of values fat, (0.088 forR,=14 nm and 0.195 foR;=12 nm) at
the conditions of interest.

Figure 6 shows the predictions of E®) for the zero-shear viscosity of gelatin-silica
system forr,=0.088 and 0.135, which are substantial improvements over those of the
effective hard-sphere model without attractions shown in Fig. 4. The quality of the
prediction is excellent fot;, of 0.135, which corresponds to the lower end of the reported
value ofRy. Given the approximate form of the potential and the fact that the parameters
that go into this prediction are independently measured, this agreement validates the
approach presented here for calculating the zero-shear viscosity of the polyampholyte-
stabilized colloids. Also, using the lower range Ry of gelatin is qualitatively consistent
with the predictions of more sophisticated theories for depletion attraction, swrehsas
which predict a lower second virial coefficient in comparison to that of the Asakura

10°
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FIG. 6. Measured zero-sphere relative viscosities for silica in gelatin vs model fit at 40 °C, 10 mM satland

8. The dashed line is the prediction of &) with 7,=0.088(R,=14 nm). The solid line is the prediction of Eq.
(9) with 7,=0.135(R;=12.5 nm). The uncertainty in data is of order of the symbol size.
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FIG. 7. Measured SANS for silica in gelatin vs model predictions at 40 °C, 10 mM saltpBin8. The solid
line is the adhesive hard-sphere prediction. The parameters are tabulated in Table IV. The intensities are shifted
vertically for clarity.

Oosawa mode[Chatterjee and Schweizét998a, B]. The Huggins coefficient can be
calculated from Eq(10) to be 4.39(7,=0.088 to 3.19(7,=0.135, which also compares
well with the measured value of 5.8+3.

The value ofr, that predicts the zero-shear viscogity=0.135 can be independently
verified by comparingpredictionsfor the suspension microstructure with SANS measure-
ments, as shown in Fig. 7. The scattering constgritas been adjusted to within the
uncertainty in the calculated values. The model parameters are tabulated in Table IV. As
seen from Fig. 7, the prediction of the SANS measurements with the same independently
measured parameters that predict the rheology is very good. This is a major improvement
over what is predicted from the effective hard-sphere model as seen from Fig. 5 and
earlier reports in the literature. Hence, we conclude that weak attractions must to be taken
into account to completely describe this gelatin-stabilized colloidal dispersion.

TABLE IV. Parameters for SANS prediction in Fig. 7. The FWHM of neutrons is 14.7% and polydispersity is
8%. |, was calculated from parameters reported in Table II.

Volume Free Calculated I for
fraction of gelatin lo best fit Deore Dot
silica (mg/ml) (ecm™) (cm™) (nm) (nm) T
0.009 5 220 185 31 59 0.135
0.021 5 522 450 31 59 0.135
0.044 5 1061 1006 31 59 0.135
0.061 5 1434 1508 31 59 0.135
0.078 5 1760 1584 31 59 0.135
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FIG. 8. Measured zero-shear relative viscosities for siligg,=0.043 in gelatin vs model at 40 °C, 10 mM
salt, andpH 8. The dashed line is the prediction of Ef) accounting for osmotic repulsion in the brush and the
solid line is the prediction of the Eq9) accounting for additional depletion attractions., The parameters are
tabulated in Table V.

D. Effect of gelatin concentration-fixed colloid volume fraction

To further test the proposed model, experiments were performed at a fixed silica
volume fraction of 0.043 and varying background gelatin concentration. Figure 8 shows
a plot of the measured relative zero-shear viscosities of these samples compared with the
predictions. The relative viscosity shows an initial increase with increasing background
gelatin, but plateaus at a gelatin concentration of about 5 mg/ml gelatin. A similar result
was reported by Buscadlt al. (1993, i.e., an initial increase in viscosity with increasing
polymer concentration followed by a plateau when the concentration of the polymer in
the background is in the semidilute region. This was attributed to the saturation in the
depletion potential resulting from polymer chain overlap in the semidilute regime. The
correlation length of the polymer, which determines the magnitude of depletion attrac-
tion, scales wittR, for a neutral polymer in the dilute region but scales@s‘o-“in the
semidilute region. This leads to a saturatiorli(r) with increasing polymer concentra-
tion, which results in a plateau in thelative viscosity. This transition is observed at
about 5 mg/ml, which is the value af reported by Pezroet al. (1991) for similar
gelatin solutions. Note that solutions of our gelatin at these conditions do not form a
sample spanning gel below this gelatin concentration upon lowering the temperature
below the gel point.

Figure 8 also shows the predictions of the effective hard-sphere modé&)Bmjth the
osmotic overlap correctiofEq. (19)] as well as the model including attractions, £9).

The interaction potentiat, has been assumed to plateau at 5 mg/ml. Below this concen-
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TABLE V. Parameters for predicting the data presented in Fig. 8. Silica volume fraction is 83482 nm.

Free Adsorbed Osmotic pressure

gelatin gelatin of free gelatin Dt

(mg/ml (mg/ ) (Pa (nm) Th
1 0.58 38 55 1.61
2 1.03 77 57 0.72
3 1.39 117 58 0.33
4 1.69 159 59 0.24
5 1.94 203 59 0.135
7 2.33 298 60 0.135
8 2.49 347 60 0.135
10 2.75 454 61 0.135
15 3.19 763 61 0.135

tration the potential is calculated from E(8) with R, of 12 nm and the osmotic
pressure using Eq31). Again the predictions of the model accounting for both repulsive
and attractive interactions yield a significant improvement over the effective hard-sphere
model. The predictions are quantitative except at very low concentrations of gelatin,
where possible incomplete coverage complicates the interpretation of the measurements.
The parameters used are tabulated in Table V.

Figure 9 shows the SANS for a fixed silica volume fraction of 0.05 at different gelatin
concentrations along with the predictions of the model including both repulsive and
attractive interactions due to adsorbed and free gelatin, respectively. The SANS param-
eters are tabulated in Table VI. Again, there is excellent agreement between model pre-
dictions that include attractions and the measurements. Also shown are the dashed lines
for the effective hard-sphere model. Clearly, accounting for the free gelatin is necessary
to properly predict the measured dispersion microstructure.

E. Comparison to additional data from the literature

Hone et al. (2000 measured the shear viscosity of polystyrene latex stabilized by
gelatin in agueous solution at various conditions. They modeled the shear viscosity to
estimate the adsorbed and free gelatin and the effective hard-sphere size due to adsorbed
gelatin, and measured the hydrodynamic size of these complexes using DLS at some
conditions. Interestingly, they extracted a grealwological layer thicknessompared to
a hydrodynamic layer thicknessbtained from DLS. This suggests the presence of weak
attractions due to the presence of free gelatin in the dispersions.

Vaynberg and Wagnef2001) measured the zero-shear viscosity of aqueous acrylic
latex dispersions stabilized by gelatin. Their experimental protocol differed slightly from
that presented here as they removed the free gelatin by repeated centrifugation. Since
there is no free gelatin in the system, the Asakura-Oosawa model predicts that the value
of 7, should be largéi.e., the system should be close to the hard-sphere) liktidwever,
it is plausible that residual weak attractions may arise in these dispersions due to gelatin-
gelatin interactions between the adsorbed layers, as the dispersions are only a few degrees
above the gel transitio~37 °C). Alternatively, inherent van der Waals forces could
also be a source of attractions.

The zero-shear viscosities from these published reports are plotted in Fig. 10. It was
shown previously that these data could be largely reduced to a master curve by using an
effective hard-sphere size accounting for the adsorbed gedletishnamurthyet al.
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FIG. 9. Measured SANS for silica in gelatin vs model predictions at 40 °C, 10 mM saltpril The gelatin
concentration is varied as noted. The solid line is the adhesive hard-sphere prediction. The dashed line is the
prediction of the effective hard-sphere model without attractions. The parameters are tabulated in Table VI. The
intensities are shifted vertically for clarity.

(2004)]. Figure 11 shows a master plot suggested by(g)the relative viscosity for the
systems in Fig. 10 is divided by the terfh+1.94?/ 7,) and plotted against the effective
volume fraction. When plotted in this manner a master curve correspondiglf &hould

result. The hydrodynamic size was used to estimate the effective particle size and the
value of 7, was fit and reported in Table VII. Two sets of data amenable to the analysis
have been used from Horet al. (2000: the 52 nm(diamete) rheology set with the
reported corona thickness 6f38 nm in absence of electrolyt@able 3b in the refer-
ence; 134 nm particles with no added sélable 4a in the referengat constant gelatin
concentration of 0.5%. The reported DLS diameter is about 43 nm and the relative
viscosities presented in that paper are used directly for the analysis. Also shown are the
two hard-sphere mode[&£qgs.(2) and(3)].

TABLE VI. Parameters for SANS prediction in Fig. 9.

Volume Free Calculated Io for
fraction of gelatin Iy best fit Deore Dt
silica (mg/ml) (cm) (cm}) (nm) (nm) T
0.052 2 1256 968 31 57 0.72
0.052 5 1232 1019 31 59 0.135
0.050 15 1128 1028 31 62 0.135

0.050 20 1107 985 31 63 0.135
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FIG. 10. Relative viscosity of gelatin coated particles at differpht/salt plotted as a function of the bare
colloid concentration from Vaynberg and Wagrn@00l) pH 5.8V¥), 6.5H) and 8A), Hone et al. (2000
26 nm PS on salt4) and 67 nm no salt in 0.5% gelat{®) and this work(®).

Figure 11 demonstrates that a master curve for these complex systems can be achieved
if both the excluded volume due to the adsorbed gelatin and weak attractions due to free
gelatin and gelatin corona interactions are accounted for. As noted previously, there are
deviations for some data sets at high packing fractions suggesting effects of polydisper-
sity or possible adsorbed layer compression may be relevant near maximum packing.

The systems described so far have free-gelatin concentrations below or slightly above
c'. The concentration of free gelatin is small compared to the concentration in the ad-
sorbed layer. Recent woflHone and Howe&2002] has shown that at very high gelatin
concentrationgapproximately 1& compared to this wopk the dispersions show a quali-
tatively different rheological behavior; they show an exponential increase in viscosity as
the colloid volume fraction increases. The effective volume fractions of the colloid ap-
proach 200% based on rescaling the diameter determined from DLS, suggesting substan-
tial corona overlap. This observation can be reconciled to some extent by accounting for
the potential arising from both the adsorbed and free gelatin within the framework pro-
posed in this work. Vaynbergt al. (1998 reported a plateau adsorption of gelatin on
latex of about 1.5 mg/M From this, the adsorbed and free gelatin concentrations is
calculated using a mass balance and the reported concentrations of silica and gelatin.
Based on the reported hydrodynamic sizes, the concentration of gelatin in the free solu-
tion is calculated to be higher than that in the adsorbed corona. Thus, according to the

simplified osmotic overlap model there will be no steric repulsiodMBE'S"® is nega-
elatin
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FIG. 11. Data rescaled with calculated volume fraction and corrected for attractions from Vaynberg and Wagner
(2001 pH 5.8(V), 6.5M) and &A), Honeet al. (2000 26 nm PS no s&l#) and 67 nm PS no salt in 0.5%
gelatin(») and this work®). The parameters are tabulated in Table VII. Also shown for reference are predic-
tions of hard sphere equation E®) with ¢,,,=0.58(solid line) and Eq.(3) (dashed ling

tive. However, compression of adsorbed gelatin layer as two particles approath to
<L, will result in a further concentration of gelatin in the overlap volume, resulting in a
steep steric repulsioffritz et al. (2002]. Thus, the effective hard-sphere size should be
on the order ofo+L. Estimates for the relative zero-shear viscosities are calculated by

TABLE VII. Rheological parameters for Fig. 11.

Core Corona Adsorbed Th
radius  thickness Salt amount  Dggy (from
Source (nm) (nm) pH (mM)  (mg/m?)  (nm) T calculation
Vaynberg and Wagner 33 26 5.7 10 15 4.1 0.52 0
(200D
Vaynberg and Wagner 33 27 6.6 10 1 4.6 0.59 0
(200D
Vaynberg and Wagner 33 26.5 8.0 10 0.8 4.4 0.95 o
(200D
Krishnamurthyet al. 15.5 15.5 8.0 10 4 25 0.135 0.08-0.195
(2009
Honeet al. (2000 26 37 6.0 0 4.15 0.08
(Table 3 in referenge
Honeet al. (2000 67 43 6.5 0 2 0.12
(Table 4 in referenge
Hone and Howe 57 115,165 5.75 10 15 0.15
(2002 and 21 nr

%0ne half of the reported thickness to account for significant layer compression.
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FIG. 12. Relative viscosity of gelatin coated particles for different gelatins plotted as a function of the effective
colloid concentration from Hone and How2002 Gel A with 23 nm corona thickness measured from DLS
(V¥), Gel B 32.5 nm coroné]) and Gel D with a 42 nm coron@). The bare particle was 57.1 nm in diameter.
Data plotted with volume fraction rescaled with half the reported hydrodynamic layer thickness. The dotted line
is the prediction of Eq(2) with a hard-sphere size based on the reported DLS diameter for the 23 nm particle.
Dashed line is the prediction of E¢2) and the solid line is the prediction of E¢) with 7,=0.15, both
accounting for brush overlap.

rescaling the volume fractions witlo+L/o)3. Using 7,=0.135, which is expected to be
approximate for these high gelatin concentrations, reasonable predictions can be realized
until ¢~ 0.4 as can be seen from Fig. 12. The deviations at higher packing fractions are
not unexpected within the framework of the osmotic overlap model and would require a
more sophisticated treatment of the adsorbed and free gelatin.

The parameters for the predictions are reported in Table VIl along with estimates from
the Asakura—Oosawa potential and equating second virial coefficients. As expected, a
systematic trend can be observed from the fit values,ofor systems with free gelatin
from both our work, from Honet al. (2000 and Hone and How&002 a value of about
0.14 describes the system adequately@er C". For the systems without free gelatin
[Vaynberg and Wagn&001)], the value ofr, is large(>0.5) indicating the low amount
of stickinessor near hard-sphere behavior. For reference, the gas liquid critical point for
the Baxter potential ig¢ica 75Mt@h —(0.1213,0.0976 [Menon et al. (199]. The
extractedr, values for all these systems are well ab@ﬁé‘ica' indicating that all of the
samples are in the single-phase region at the concentration of colloids investigated, which
is consistent with observations.

V. CONCLUSIONS

Stable colloidal suspensions of silica in aqueous gelatin solutions can be modeled as
colloidal dispersions of silica with an adsorbed layer of gelatin suspended in aqueous
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solution with free gelatin. An effective colloidal interaction potential that accounts for the
repulsion due to the adsorbed gelatin, as well as the attraction arising from free gelatin
inducing a depletion interaction, are shown to predict both the low shear relative viscosity
and microstructure of these dispersions.

In this work, we present a new semiempirical constitutive equation for the zero-shear
viscosity of colloidal dispersions with weak attractions in terms of parameters that can be
independently measured. This model can be used to predict trends in the zero-shear
viscosity of colloidal systems in the presence of free and adsorbing polymer. The pro-
posed interparticle potential reconciles apparent discrepancies between the suspension
rheology and microstructure observed in our work and reported by others in the literature.
The modeling is applied to provide a consistent quantitative description of a broad range
of measurements of colloid-gelatin dispersion rheology from the literature with predicted
or estimated parameters. Consequently, the methodology presented here is anticipated to
apply to broader classes of colloidal dispersions with grafted and adsorbing polymer as
well as surfactants; further exploration of this is underway.
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