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The objective of this research is to find out more about why/how non-ionic 
surfactants reduce aggregation. 

 

Our Research 

 
• Protein adsorption to interfaces 

 
 
 
 
 
 
 

• Interactions between proteins in bulk solution 
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Background – Monoclonal Antibodies 

• Target specific antigens 

• Can be engineered in a lab 

• Effective against autoimmune 
diseases and cancer 

• Specificity reduces side effects 

TRES3D Medical and Scientific Animation 
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they are made by identical immune cells that are all clones of a unique parent cell, in contrast to polyclonal antibodies which are made from several different immune cells



What are surfactants? 

Amphiphilic molecules: 

Hydrophilic head 
group 

Hydrophobic tail group 

Results in unique 
behavior: 

Forming monolayers  at interfaces Micellular 
formation 

*At or above the 
critical micelle 
concentration (CMC) 



How might surfactants help? 

Competitive binding at interfaces 
 
 
 
 
Encapsulation in micelles 

 
 
 

Preferential binding leading to steric 
hindrance of aggregation 



• 4 Surfactants 
– Triton X-100 
– Tween 80  
– Octyl-beta-D-glucopyranoside (OG) 
– Cetyltrimethylammonium Bromide (CTAB)* 

• Protein 
– Immunoglobulin G (IgG) 

 
=4 samples; collected data at multiple concentrations of surfactant 
(below, at, above CMC) 
 

Bulk Solution Investigation:  
10m SANS 



Bulk Solution Investigation:  
10m SANS 



SANS Data: IgG and Two Surfactants 

• Dampening of upturn at low q 
• Some change of solution structure at medium-high q 
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Suppression of higher-order structures

Changes at high q could be due to:
	competitive scattering of micelles and proteins
	selective binding of surfactant to protein
	perhaps encapsulation

Look more into: 
	scan of surfactant itself
	contrast-match out one of two species: preferably the surfactant so we can see how structure of protein itself is changing


[INTRO REFLECTOMETRY]



Air/Water Interface Investigation: 
 Xray Reflectometry 
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Air/Water Interface Investigation: 
 Xray Reflectometry 

Protein Adsorption (one of the possible 
configurations) at air-water interface 

LAir 

LHead Groups 

LSolvent 

LProtein 

LBulk Solvent 

LTails 

Langmuir Trough Work: 



Air/Water Interface Investigation: 
 Xray Reflectometry 
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Air/Water Interface Investigation: 
 Xray Reflectometry 
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Air/Water Interface Investigation: 
 Xray Reflectometry 
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Effect of Surfactant on Air-Water Interface Adsorption 

• ~50 Å of dense antibody layer (flat-on) 
 
 
 
 
 
 

• Some diffuse layer ~60 Å 
 

• Addition of Triton X-100 (even below 
CMC) yield significant competition 
 

• Further addition of Triton X-100 yields 
further depletion of antibody layer 
 

• Addition of more antibody does not 
negate/reverse effect of surfactant 
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Agitation of the Air/Water Interface 
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Air/Water Interface Investigation: 
 Xray Reflectometry 
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Air/Water Interface Investigation: 
 Xray Reflectometry 
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Micro-Flow Imaging 
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Examines: 

• Size (Equivalent Circular 
Diameter – ECD)  

 

 

 

• Shape (Aspect Ratio) 

 

 

• Volume (Counts number of 
particles) 
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Solid/Water Interface Investigation:  
Micro-Flow Imaging and Fluorescence Spectroscopy 

ThT Fluorescence 
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Discussion 

• Our findings are consistent with earlier findings that surfactants affect protein 
aggregation and adsorption 
 

• Suggest that surfactants may adsorb to surface of protein itself, or form structure 
around protein to prevent protein-protein interactions 
 

• Surfactant outcompeted protein at air-water interface and further addition of 
protein did not negate this effect 
 
 
 

 
 
 
 



Acknowledgments  

Thank You to: 
 
• Tatiana Perevozchikova 
• Ron Jones 
• Katie Weigandt 
• Prof. Chris Roberts 

 
• Hirsh Nanda 
• Mike Dimitrou 
• Bulent Akgun 

 
• SURF Directors 
• NSF CHRNS 
• NCNR 



Questions? 

Thank you. 



SANS Data: IgG and Two Surfactants 



Solid/Water Interface Investigation:  
Micro-Flow Imaging and Fluorescence 
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Calculated Rg values: IgG Sample Rg (Å) 
IgG Stock 49.256 
    
CTAB (from literature)   
IgG+CTAB above CMC 46.865 
IgG+CTAB at CMC 47.504 
IgG+CTAB below CMC 48.471 
    
OG (from literature) 23.5 
IgG+OG above CMC 40.209 
IgG+OG at CMC 46.6 
IgG+OG below CMC 47.448 
    
Triton (from literature) 43 
IgG+Triton 7.5x CMC 45.079 
IgG+Triton 3.75x CMC 45.859 
IgG+Triton 2x CMC 45.865 
IgG+Triton at CMC 46.459 
IgG+Triton below CMC 44.591 
    
Tween (from literature) 26.2 
IgG+Tween 2.5x CMC 43.446 
IgG+Tween 1.5x CMC 48.496 
IgG+Tween at CMC 48.732 
IgG+Tween below CMC 44.57 [1] Oliver RC, Lipfert J, Fox DA, lo RH, Doniach S, et al. (2013) Dependence of Micelle Size and Shape on PLoS ONE 

8(5): e62488. doi: 10.1371/journal.pone.0062488 
[2] Streletzky K, Phillies GDJ. (1994) Temperature Dependence of Triton X-100 Micelle Size and Hydration. 
Langmuir 11: 42-47 
[3] Amani A, York P, de Waard H, Anwar J. (2011) Molecular dynamics simulation of a polysorbate 80 micelle in 
water. Soft Matter 7: 2900-2908  
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