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Hi guys. I’m Maggie Lovell, from the University at Albany. I’ve been at the NCNR this summer with Dr. Joel Helton, working on growing a spin-1 frustrated antiferromagnetic kagome lattice. Now I know that doesn’t mean anything to you at the moment so let me go over a little theory real quick.



Frustration:
When all interactions cannot be 

 simultaneously satisfied.
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Frustration has been defined as “when all interactions cannot be simultaneously satisfied.” This is a pretty general definition, and there are a lot of different kinds of frustration. It occurs in water, in systems of springs, and in siblings. We have been dealing with a very specific kind of frustration called -



Geometrically Frustrated Magnetism

There is no 

 
way to satisfy 

 
the third spin!

∑ ⋅= 21 SSJH
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(Antiferromagnetic when J is positive.)
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-Geometrically frustrated magnetism. Let me give you an example. (click) Say you have a triangular lattice like this one, in which you want to place some ions, each with a spin of a half. These ions interact antiferromagnetically. Here is a hamiltonian for the mathier people. (click) So it is natural to place the first in up (click), and the second in down (click). But how to place the third spin? If you place it up, (click) this is unhappy. If you place it down, (click) this is unhappy. So there is actually no way for all of these ions to spin in peace. They eventually decide on a compromise (click) of 120 degrees. This is as happy as they can be, so this is their ground state. Note that these spins ought to be able to move three dimensionally. Let me demonstrate. (markers) Let’s say I rotate this spin out of the plane, where it is free to go, as it does not impinge upon the 120 degrees. However if I do this, I must also rotate this other spin out of the plane to make up for it. Notice that this third spin is unaffected by this change. Now if I rotate this spacially, you see that it is exactly the same. So this rotation out of the plane, in this case, can be likened to turning the entire lattice over. This will be important in a moment.



Edge Sharing
Triangular 

 
Lattice(Rotating one spin would force rotation all over the lattice.)

Corner Sharing
Kagome Lattice

(Lines of spins rotate independently)

VS.

Frustrated Lattices
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Things get more complicated when you add more triangles. This is an edge sharing triangular lattice, previously thought to be a very promising place to look for the effects of frustration, but experiments with lattices of this type have shown only minimal frustration.
If I rotate this spin out of the plane, (click) the resulting perturbation carries across the entire lattice, resulting in an effect much like the spacial rotation I demonstrated on the single triangle.
Now, this (click) is a corner sharing triangular lattice. Notice that each spin only contributes to two triangles, as opposed to the six of the edge sharing. Therefore they affect each other less. See, if I rotate this spin (click) only the line is affected. You can do the same to any spin in there and trust that only one chain will be affected.
You can see that the row below is the same as it was? Well, I could rotate that one, too. I could rotate it less, or in a different direction. And the rest of the lattice would not care! There is no energy cost for this change, so every configuration is a degenerate ground state. The definition of frustration has been therefore refined slightly to include indecision. The constant fluctuations cause disorder at even low temperatures, for there is no single ground state to settle into. And the kagome lattice has been adopted as the more frustrated system.
So this is the place to look for a weird state of matter called a spin liquid.



Spin Liquid

Proposed by P.W. Anderson, Mat. Res. Bull. 8, 153 (1973)
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So when the system is THAT frustrated, a more ‘quantum’ solution becomes slightly more energetically favorable. The spins grab a partner (click) to form these (click) superposition, (click) schrodinger cat singlet states. These can change partners just as easily as the spins can rotate, and can even actually take (click) partners across the lattice, though that is less probable. So they are just as disordered. This disorder shows up in the magnetometer data.
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Susceptibility is…
Josephson current



Curie‐Weiss Fit

A Measure of Frustration
f= θcw
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Curie‐Weiss Law:

Susc. = Curie Constant / 

 
(Temp – Cw temp)
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The curie-weiss fit is done on high temp inverse susc data to project the temperature at which a system should order ferromagnetically - theta cw. An antiferromagnet never orders ferromagnetically, so its tcw is negative, and it should order antiferromagnetically at its absolute value.



Evidence of Frustration

Ramirez, A.P.; Annu. Rev. Mater. Sci. 24:453‐80 (1994)

|||| Jcw ∝θ
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This is a normal AFM, ordering at its Tcw. This is a frustrated system. You can see that it orders way colder than it should.



Distorted Spin‐1/2 Kagome Lattices

• Very close to ideal kagome. 

 Slightly isosceles. 

• Each nearly 2D plane is well 

 separated from the others by 

 the intervening structure.
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These are a couple of real systems that have been studied in the hopes of finding spin liquids, naturally occurring cu based spin ½ lattices vesignieite & volborthite. They are really close to equilateral.



Cu‐Vesignieite: A Possible Spin Liquid

Y. Okamoto, H. Yoshida, Z. Hiroi; 
Journal of the Physical Society of Japan 78, 

033701‐1 (2009)

Singlets Form |θcw

 

| = 77K

Nothing happens at the projected 

 
ordering temperature!

Very frustrated.
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This is magnetic susceptibility data for vesignieite. As you can see nothing happens at its Tcw.
It’s difficult to see just where the transition to spin liquid occurs, because the kagome lattice is so much more frustrating than anything similar. So we wanted to explore what would happen if we made a slightly less quantum system, like a spin-1. Because of how well the Cu version turned out, and because there had not yet been a spin 1 version, we thought a Nickel version would be really interesting. Nickel is similar to copper in many ways except its extra electron that gives it spin 1. 



Nickel Vesignieite: A Spin‐1 Kagome Lattice

• What is the transition like?

• Bigger spins exhibit less “quantum”
 

behavior.

• Nickel is spin‐1…





Making Spin‐1 Ni‐Vesignieite:
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•Compared to Cu‐

 Vesignieite data and 

 theoretical lattice 

 parameters.
•A GSAS fit refined the 

 parameters further.
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X‐Ray Structural Analysis
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Space Group: C2/m (Monoclinic)
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Compared to cu data, then to calculated lattice params, to confirm results. Then fit to refine lattice params.
Now that we have our sample, we can explore its magnetic properties…
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Susceptibility Study by
J. Rall, M. Seehra, N. Shah, G. Huffman,

J. App. Phy. 107, 09B511 (2010)

Hard to see what’s going on…

Ni‐Vesignieite SQUID Data
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FC‐ZFC shows a 

 ferromagnetic 

 impurity.
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This data was taken using a superconducting quantum interference device. Since it is a magnetometer I can only conclude that the name means the inventors really wanted to be able to say they were working on a squid…
It isn’t easy to see this way, so we do a fit…
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Antiferromagnetism!
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= ‐16.6 K
J = 0.54 meV
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Curie Weiss shows it is antiferro, note neg Tcw.
We are also able to extract J, the measure of how strong the interactions are. (just enough for neutron scatt)
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Katzgraber et alia, Phys. Rev. B. 76, 092408 (2007)
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So what is it?
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The two biggest reasons for such a large divergence between field and zero-field are ferromagnetism and spin glass.
A spin glass picks one of the many ground states and sticks there.
It does not fluctuate.
The term for this is “quenched disorder.”





Spin Glass
A spin glass picks one of the many 

 ground states and sticks there.

It does not fluctuate.

The term for this is “quenched disorder.”



Conclusions
We have synthesized Ni‐Vesignieite.

It is a slightly distorted kagome lattice.

It shows no order down to θcw
 

/10 (evidence of frustration).

Likely spin glass transition at about θcw
 

/2.
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Why? Could be impurities, could be distortion, could be intrinsic



Further Studies

Frequency Dependant SQUID Measurement

Neutron Bragg Scattering
To confirm Spin Glass diagnosis.

Inelastic Neutron Scattering
To explore excitations.

Grow Ni‐Volborthite
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