NIST Neutron Research at NIST NCMR A Symposium honouring Mike Rowe & Jack Rush

Neutron Scattering in Soft Matter Science D. Richter

Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany

Proceedings of the Conference on

NEUTRON SCATTERING

GATLINBURG, TENNESSEE, U.S.A. JUNE 6-10, 1976

OMMAN

Sponsored by

Oak Ridge National Laboratory and the U.S. Energy Research and Development Administration

H in metals

OECD Megascience Forum

NSE instrument

Promoting neutrons

H in Metals

BT4 at NIST

Numerous joint publications

Physical Review B **27**, 927 (1983) H trapped at O-

impurity in Nb

Europhysics Letters **48**, 187 (1999)

Exited state tunneling of trapped H

Science with Mike & Jack

Maintain local neutron infrastructure as far as possible

OECD neutron group report

Neutron Instrumentation

NSE with worldwide highest Field integral (Resolution) IN 11 => 0.2 Tm IN15 => 0.27 Tm JNSE/NIST => 0.5 Tm

Multidetektor (32x32cm²)

Most modern compensated Field design

State of the art NSE

Promoting Neutrons

MRS Special: Neutrons in Materials Science

Neutron Scattering in Soft Matter Science

What is Soft Condensed Matter?

What is Soft Condensed Matter?

What is Soft Condensed Matter? Surfactants micellar Polymer solutions amphiphilics Colloids Liquid crystals Membranes

What is Soft Condensed Matter?

unifying principles

large number of internal degrees of freedom

weak interaction between the structural units delicate balance entropic ← → enthalpic contrib. to free energy

Statistical physics: universal properties

Soft Condensed Matter: Challenges

Interplay : specific and universal

- Bridge the huge gap in the length and time scale: individual molecular units to the mesoscopic structures
- Fundamental understanding of interplay between enthalpy and entropy
- Out of equilibrium systems
- Concepts of SM for biological systems

From synthetic molecules to the building blocks of life

Neutrons and Soft Matter

Neutrons access molecular length and time scales

Neutrons and Soft Matter

Neutrons enable contrasting on molecular scale

Neutrons and Soft Matter **Contrast** variation

Neutrons enable contrasting on molecular scale

Neutrons and Soft Matter **Contrast** variation

Neutrons enable contrasting on molecular scale

Polymer Chain Conformation **Jülich 1974** SCIERCE 100 intensity 10 P.J. Flory Stanford USA Nobel prize 1974 10 scattering angle

Early triumph of neutron scattering

Polymer Chain Dynamics

Subject of intense current research

Neutrons in Soft Matter Science Real time kinelie & **Multiscale dynamics** non equilibrium processes **Soft Matter Challenges** Key components Self-assembly

Polymer Dynamics

Example: viscoelastic and mechanical properties of polymers

Molecular Origin?

with

A. WischnewskiFZ JülichM. MonkenbuschFZ JülichL. WillnerFZ JülichM. ZamponiFZ Jülich

Space time resolution on a molecular scale

Entropic and frictional forces

Linear Chain Dynamics in the Melt

Rouse model

Topologically constraint Motion - The Effect of Chain Length

Reptation: relaxation in tube – creep out of tube

Topologically constraint Motion - Self-Motion

Mean squared displacement

Topologically constraint Motion - Reptation

Mean squared displacement

Contrast and real time capabilities

What to Expect from Theory?

Halperin and Alexander 1989:

Only unimer exchange relevant for polymeric micelles (Aniansson-Wall mechanism):

 $E_A \sim N_B^{2/3} \gamma$

Single exponential relaxation for unimer exhange

- Micellar exchange kinetics

Cannot be described with a single exponential!

Polydispersity provides no explanation

Extremely broad distribution of rates

- Micellar exchange kinetics

- Logarithmic time dependence
- independent of system
- escape time Halperin: minutes
- confinement in micellar core ?
- hierachical processes ?

Neutrons in Soft Matter Science

Molecular dynamics

Real time kinetic & non equilibrium processes

Selfassembly

Microemulsions

Observing Key Components

Emulsification boosting

Inherently Small Cross Sections

Observation of key components in multicomponent systems

Observing Key Components

- S_{pf}: polymer- film interference
- Polymer scattering amplitude

Polymer density distribution at interface

Theoretical Implications

 $c_i = 1/R_i$

 R_1

curvature energy (Helfrich)

$$H = \int ds \left[\frac{\kappa}{2} \left(C_1 + C_2 - 2C_0 \right)^2 + \overline{\kappa} C_1 C_2 \right]$$

 $\overline{\mathbf{k}}$:determines phase boundary

$$ln\phi_{fish-tail} = \frac{4\pi \ \overline{\kappa}}{\overline{\alpha} \ k_B T} \quad \overline{\alpha} = \frac{1}{2}$$

Microemulsions: governed by surface elasticity

Explanation: Polymer Changes Membrane Elasticity

Influence on emulsification boundary is universal effect

Neutrons in Soft Matter Science

Molecular dynamics

Real time kinetic & non equilibrium processes

Wax Control by Self-Assembling Polymers – A Scientific Approach

Wax crystal in Diesel oil plug filters

with	
L.J. Fetters	(Exxon)
J. Huang	(Exxon)
M. Monkenbusch	(Jülich)
L. Willner	(Jülich)

Neutron discover and tailor antifreeze for Diesel

Wax Crystal Modification: - A Scientific Approach

Richter et al., Macromolecules 30 (1997) 1053 Leube et al., Engergy&Fuel 14 (2000) 419

SANS deciphers structures with contrast variation

PE-PEP Diblocks as Wax Crystal Modifiers

SANS deciphers structures with contrast variation

Brush Contrast

Thermodynamics of Platelet Formation

structural data for different compositions identify the contributions Brush: loss of entropy due to chain stretching

<u>Core:</u> crystallisation enthalpy

chain folding

ethylene side chains (defects)

Basis for predictions on size and surface

Interaction with Wax

contrast effective thickness change

Wax and core visible – thickening of core

Correlations with $\Sigma CFPP$

predictive power of SANS based free energy

wax crystal supression by nucleation at PE surface

Antifreeze for Diesel

supression of large crystals

4 years from discovery to commercialization

Selfassembly: Biomineralisation

Biomineralisation

Nature tailors crystal growth (e.g. in bones and teeth) using associating polymers

SEM of Emiliana Cocosphere

Selfassembly: Biomineralisation

Problem

Patients with long term dialysis display down regulated fetuin expression leading to calcification of soft tissue

D. Schwahn, H. Endo (FZ Jülich) and H. Heiß, Jahnen-Dechant (RWTH Aachen)

Calcification of fetuin deficient mouse

Precipitation Mechanism

SANS experiments

Partial Structure Factors from Contrast Variation

- Bimodal protein distribution in solution
 - free proteins
 - proteins associated with mineral

positive P_{PM} at higher Q \rightarrow protein outside mineral

Association Mechanism

Dense layer of proteins at the surface

Soft Condensed Matter

broad + rich field with close links to application and likely biology

Neutrons: Proper length + time scales
H/D contrast

Decisive role in combination with
advanced chemistry
computer simulations and modellisation

Soft Matter Dynamics: The Future

NSE at SNS: From ps to μ s

Best in resolution and dynamic range

Interplay between specific and universal