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Abstract 
 

The new thermal triple-axis spectrometer at the NIST Center for Neutron Research 
(NCNR) is located at the BT-7 beam port.  The 165 mm diameter reactor beam is 
equipped with a selection of Söller collimators, beam-limiters, and pyrolytic graphite 
(PG) filter to tailor the beam for the dual 20×20 cm2 double-focusing monochromator 
system that provides monochromatic fluxes exceeding 108 n/cm2/s onto the sample.  The 
two monochromators installed are PG(002) and Cu(220), which provide incident energies 
for 5 meV to above 500 meV.  The computer controlled analyzer system offers six 
standard modes of operation, including a diffraction detector, a position-sensitive detector 
(PSD) in diffraction mode, horizontal energy focusing analyzer with detector, a Q-E 
mode employing a flat analyzer and PSD, a constant-E mode with the analyzer crystal 
system and PSD, and a conventional mode with a selection of Söller collimators and 
detector.  Additional configurations for specific measurement needs are also available.  
The capabilities and performance are described for this new state-of-the-art neutron 
spectrometer. 
 
 

1.  Introduction 

The NCNR has operated as many as 
four thermal triple-axis instruments over the 
years, that typically were developed in the 
early stages of the facility and with quite 
limited budgets.  As the NCNR developed into 
a national user facility a modernization of the 
thermal neutron spectrometers became 
essential.  As part of this modernization, a new 
state-of-the-art triple-axis instrument has been 
designed and is now installed at the BT-7 
thermal beam port.  In addition, a second 
spectrometer of similar design is under 
development to be installed at another thermal 
beam port.  These new instruments will take 
full advantage of the large 165 mm diameter 
beam tubes, with two interchangeable 20×20 
cm2 double focusing monochromators that 

provide 400 cm2 in reflecting area for each 
monochromator.  A pyrolytic graphite (PG) 
monochromator will be available for both 
instruments, and for BT-7 the second 
monochromator is Cu(220).  Ge(311) will also 
be available for at least one of the instruments 
in the future.  The analyzer system uses PG, 
with horizontal focusing capabilities in a 
variety of configurations, and together these 
new capabilities can provide signals that are 
two orders-of-magnitude larger than available 
with the original thermal triple-axis 
instruments.  

 
2.  Overview of the design 

 
A schematic of the spectrometer is 

shown in Fig. 1.  On the new thermal  
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 Each of the modes described above 
have scripts to set up the modes on the 
spectrometer, and software in DAVE [18] to 
visualize and analyze the data.  In addition to 
these capabilities, the flexibility of this blade 
design offers additional configurations that 
can be tailored to specific measurement needs.  
For example, Fig. 6(e,f) shows two 
configurations that use a Söller collimator in 
the sample-analyzer position, and the PG 
crystals oriented approximately along the 
direction of kf but with each blade set to 
scatter a different energy.  Fig. 6(e) shows a 
configuration where all the scattering is 
focused onto a single detector, while Fig. 6(f) 
uses the PSD to discriminate the (Q,E) values 
measured.  This flexibility of the analyzer 
system can be employed to adjust the 
measurement conditions, such as the slope of 
the (Q,E) measurement, to take best advantage 
for a specific measurement need. 
 
 One final comment about these 
various modes.  In comparing modes 4) and 
6), for example, the counts detected using the 
PSD in mode 6) can be summed and are then 
equivalent to what is detected via mode 4).  
However, by using mode 4) the neutrons are 
focused on a small area on the PSD, or 
equivalently onto the single detector, which 
has the advantage that the active size of the 
detector is smaller, and presumably better 
shielded.  Thus the signal-to-noise should be 
better using mode 4), but at the cost of losing 
the wave vector differentiation.  The same 
argument can be made when comparing the 
configurations shown in Fig. 6(e) and (f). 
 

5. Performance 
 

The overall dimensions of the complete 
instrument as presently configured are:  1) 
source to monochromator distance, 488 cm;  
monochromator to sample distance, 206 cm;  
sample to analyzer distance, variable from 165 
cm to 229 cm;  analyzer (center blade) to 
detector distance, 35 cm.  The instrument can 
accommodate the full range of sample 
environment equipment to vary temperature, 
pressure, electric field, and magnetic fields.  In 
particular, temperatures from 20 mK to 2000 

K are available, and magnetic fields to 15 
Tesla.   
 

6. Polarized beam option 
 

A polarized beam option has been 
developed for BT-7, utilizing 3He polarizers 
immediately before and after the sample.[19]  
This gives BT-7 full polarized beam capability 
for experiments where a guide field (only) is 
applied at the sample position to control the 
direction of polarization, and thereby the cross 
sections, with either monochromator and the 
PG analyzer.  In particular, all the above 
configurations can be utilized with 3He 
polarizers before and after the sample, along 
with computer controlled polarization 
direction at the sample, to enable 
measurements of all eight of the conventional 
polarized neutron cross sections [20].  There 
are two spin rotators that can be mounted 
before and after the sample.  Alternatively, the 
polarization of the 3He itself can be inverted to 
achieve the alternate spin state before or after 
the sample.  An adjustable guide field at the 
sample position is under computer control to 
manipulate the polarization direction 
perpendicular or parallel to the scattering 
plane. 
 

7. Operational Notes 
 
The electronic systems for the new 

instrument are distributed among its 
components.  Controls for the primary 
spectrometer (beam conditioning, sample 
table, monochromator drum, double focusing 
monochromator, scattering angle) reside atop 
the monochromator drum.  All controls for the 
secondary spectrometer (analyzer motors, 
detector electronics, airpad controls), on the 
other hand, are housed in an enclosure on top 
of the analyzer itself.  The only physical 
connections of the analyzer system to the rest 
of the instrument are a mechanical coupling, 
compressed air (for the air-pad system), 
electrical power, and computer 
communications.  The distributed nature of the 
electronics and the simple linkage of the 
analyzer to the primary spectrometer are 
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designed to both alleviate heavy cabling 
burdens and to facilitate interchangeability of 
the analyzer.  In particular, if a different type 
of analyzer capability is required, such as a 
double focusing array with a detector buried in 
shielding, an analyzer with a different crystal 
choice, or a multi-crystal/multi-detector array, 
then the separate analyzer can be installed by 
floating it in on air pads, attaching it to the 
scattering angle arm, and simply connecting 
power, air, and communications.  The future 
development of additional types of analyzers 
will add important measurement capabilities 
both for the thermal as well as for the cold 
triple-axis instruments.  Current information 
about the instrument and many additional 
details of the operation are available on the 
instrument webpage [21]. 

 
8. Future Options 

 
One of the drawbacks of the triple-

axis spectrometer is that monochromator and 
analyzer crystals reflect higher order 
wavelengths, and these can not only contribute 
to background but also cause spurious peaks to 
occur in measurements.  A PG filter in the 
incident beam can remove higher order 
wavelengths, but only at discrete values of the 
energy.  One idea we investigated to try to 
alleviate this problem on the new instrument 
was to rotate the PG filter in the reactor beam 
to scatter the second-order wavelength, acting 
like a “pre-monochromator” to reduce the 
intensity of the higher order contamination.  
One could then vary the scattering angle of the 
“filter” to deplete the higher-order wavelength 
over a continuous range of energies.  
However, we found that the transmission 
through the PG of the primary wavelength was 
greatly reduced, making this impractical.  We 
only mention this because for the 
configuration shown in Fig. 6(e), the first 
blade (closest to the sample) scatters a higher 
energy than subsequent blades, so that the 
transmission of the longer wavelengths 
through each blade of the analyzer may not be 
optimal.  We note that for the configuration 
shown in Fig. 6(f) we have the opposite 
situation, with the each blade scattering a 
lower energy than subsequent blades, so there 

should be no significant transmission problem 
in this case. 

 The original design called for three 
separate low-background monochromator 
systems with three different d-spacings and 
corresponding energy ranges and resolutions;  
PG(002), Ge(311), and Cu(220).  Shielding 
needs dictated that there is only room for two 
monochromators, and the initial choice for 
BT-7 was PG and Cu(220).  One advantage of 
Ge(311), besides the different d-spacing, is the 
suppression of λ/2, and this will be the 
monochromator of choice on the second 
thermal TAS instrument.  However, the recent 
availability of velocity selectors with a large 
beam acceptance and energies up to 60 meV 
may allow these to be incorporated into our 
thermal triple-axis instruments.  In particular, 
there is sufficient room along the reactor beam 
of BT-7 to accommodate such a velocity 
selector, and this would be the ideal situation, 
providing a clean, truly monochromatic 
incident beam over a continuous energy range.  
This would represent a major advance in 
thermal triple-axis spectrometry. 

 Finally, we note that we plan to 
accommodate a four-circle goniometer on the 
new instruments.  Coupled with the diffraction 
detector or PSD, this will greatly increase our 
ability to determine crystal and magnetic 
structures, as well as the nature of diffuse 
scattering and short range order.  For inelastic 
scattering, this capability will enable 
measurements of excitations in different 
scattering planes without the need for 
remounting the crystal, greatly increasing the 
efficiency of data collection and the 
completeness of the data obtained. 
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