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The Edgeworth series model for the modification of diffraction peak shapes

because of axial divergence is compared with the peak shapes computed by a

numerical convolution method that is computationally slow. It is shown that if

the width of an approximately Gaussian instrumental peak shape is comparable

with the width of the modifying function, a condition that is generally satisfied in

fixed-wavelength neutron diffraction and in many laboratory X-ray diffraction

instruments, but not with synchrotron X-ray instruments, the Edgeworth model

is nearly identical to the convolution model, while the computation is much

simpler.

1. Introduction

The cornerstone of full-pattern fitting methods, such as the

Rietveld technique (Rietveld, 1969), rests on the ability to fit

peak profiles seen in powder diffraction experiments. One of

the more difficult aspects of modeling powder diffraction

profiles is caused by so-called ‘low-angle peak asymmetry’,

which arises both at very small and very large diffraction

angles due to axial divergence.

The mechanism that gives rise to this broadening can be

readily understood. When a narrow beam of monochromatic

radiation with wavelength � is incident on a polycrystalline

sample, the radiation diffracted from lattice planes with lattice

spacing d lies on a circular cone with semiangle 2�, where � is

given by Bragg’s law, sin � = �/2d. If this cone were intercepted

by a flat film tangent to a circle centered at the sample at angle

2�, the trace of the cone would be an ellipse with one focus

where the incident beam intercepts the plane of the film. A

conventional fixed-wavelength diffractometer samples a short

segment of the ellipse through a rectangular slit whose long

dimension is tangential to the ellipse and whose short

dimension is short compared with the instrumental width of

the diffracted beam. Although similar results are found for

other diffraction geometries, in the following discussion we

shall assume that the sample is a cylinder whose axis is

perpendicular to the incident beam, and that the detector slit

is scanned in a plane perpendicular to the sample axis.

As the detector slit is scanned across the diffraction cone,

the intensity peak has a shape given by the convolution of the

detector’s resolution function with the elliptical trace of the

diffraction cone. The elliptical trace has several effects. For

values of 2� less than 90�, the centroid of the peak is shifted

toward a lower angle, the peak is broadened, and the peak is

asymmetrical, with a tail extending toward lower angles. For

diffraction values of 2� greater than 90�, the effect is in the

opposite direction. The effect is greatest closest to 0 and 180�,

where the curvature of the diffraction cone is greatest.

In the first 25 years of full-pattern fitting, broadening arising

from low-angle asymmetry was treated simplistically and the

peak shift was generally ignored. Failure to treat the peak shift

introduces a small bias into the refined lattice constants and

the zero point, while inaccuracies in broadening are absorbed

into the parameters describing the peak widths (Caglioti et al.,

1958). In this initial period there were several approaches to

modeling the asymmetry effect. Rietveld (1969) introduced a

‘semiempirical’ function, and Howard (1982) tried one that

was based on several overlapping Gaussian functions. Another

approach utilized differing profile parameters below the peak

maximum versus above the maximum, thus ‘splitting’ the

peak. While this could be done with many functions, it was

most commonly done with Pearson VII type functions (see e.g.

Brown & Edmonds, 1980). All of these procedures present

problems with the normalization of the integrated intensities

of the peaks in different parts of the pattern. Prince (1983) first

analyzed the problem geometrically using a cumulant expan-

sion of the Fourier transform of the peak shape function, then

representing the actual function by a truncated Edgeworth

series (Prince, 2004). This procedure solves the normalization

problem, but is only possible when the underlying instru-

mental resolution function is close to Gaussian, a condition

that is usually satisfied in fixed-wavelength neutron diffrac-

tion, but not with synchrotron radiation.

A direct approach to the convolution problem was first

proposed by van Laar & Yelon (1984) and was implemented

both by Eddy et al. (1986) and by Finger et al. (1994). Software

developed by Finger et al. (referred to as FCJ hereinafter) was

widely distributed and has achieved widespread acceptance.

The FCJ approach, which uses numerical evaluation of the

integrals involved, is mathematically rigorous and indepen-

dent of the instrumental peak shape, but is computationally



extremely slow, even with modern computers. The FCJ model

has two seemingly non-adjustable parameters, describing the

ratio of the sample height and the detector aperture height to

the diffractometer radius. However, the derivation assumes

that the incident beam is parallel in the axial direction. To

account for the actual divergence, particularly when focusing

monochromators are employed, requires the use of an effec-

tive sample height, which is determined by refinement.

Prince (1983) gives expressions for the cumulants of the

peak shape function in terms of the moments of the axial

resolution function, and evaluates them in the cases where

that function is Gaussian and rectangular (which corresponds

to a sample whose axial extent is small compared with the

length of the slit). In that work, the asymmetry parameter was

treated as an adjustable parameter to be refined. In this paper,

we extend the Edgeworth series approach to fourth cumulant

terms, adopt the parameterization of FCJ, and compare the

Edgeworth series result with the FCJ results, calculated in the

case where the sample length and detector slit length are

identical, which implies a triangular axial resolution function.

Peak shapes are calculated under various conditions of

experimental resolution and sample and slit dimensions. We

demonstrate that this approach can produce nearly identical

results to the FCJ results, with dramatic computational

simplification, except in cases where extremely high resolution

is present at very low diffraction angles. Thus, the Edgeworth

series approximation is appropriate for neutron diffraction,

many laboratory X-ray diffraction instruments, but not for all

synchrotron applications.

2. The Edgeworth model

Consider a diffractometer with its axis vertical and a slit of half

height H located at radius R from a sample with half height S.

Prince (1983) showed that the moments, h�ni, of the function

that modifies the peak shapes because of the curvature of the

elliptical trace of the diffraction cone could be represented by

expressions that reduce to

h�n
i ¼ ð�1Þn½hz2n

i=ð2R2 tan 2�Þn�; ð1Þ

where z is the difference in height between a point in the

sample and a point in the slit. Here

hz2n
i ¼

Z
z2n�ðzÞ dz; ð2Þ

where �ðzÞ is the vertical resolution function. FCJ consider the

realistic case where H and S have similar magnitudes, and �ðzÞ
is trapezoidal, with the short edge equal to 2(H � S) and the

long edge equal to 2(H + S). If we let A = H� S and B = H + S,

then

hz2n
i ¼

2

Aþ B

ZA

0

z2ndzþ

ZB

A

z2n B� z

B� A

� �
dz

2
4

3
5; ð3aÞ

which evaluates to

hz2n
i ¼

B2nþ2 � A2nþ2

ðnþ 1Þð2nþ 1ÞðB2 � A2Þ
: ð3bÞ

Then

hz2
i ¼

B2 þ A2

6
; ð4aÞ

hz4
i ¼

B4 þ B2A2 þ A4

15
; ð4bÞ

hz6
i ¼

B6 þ B4A2 þ B2A4 þ A6

28
ð4cÞ

and

hz8
i ¼

B8 þ B6A2 þ B4A4 þ B2A6 þ A8

45
: ð4dÞ

A diffraction peak is represented by a density function,

P(2�), normalized so that the integral over the peak is equal to

1, with its centroid at 2� = 2�B + h�i, where �B is the Bragg

angle calculated from the wavelength and the unit-cell

constants. Its broadened width can be represented by a stan-

dard deviation, �b, given by �b = (�2
i + h�2i � h�i2)1/2, where �2

i

is the variance of the instrumental resolution function, the

limiting peak shape function as (H/R) approaches zero. [The

full width at half-maximum (FWHM) of a Gaussian peak is

2ð2 ln 2Þ1=2�.] These expressions are exact, regardless of the

shape of the instrumental resolution function, provided that its

first two moments exist.

If the experimental resolution function is approximately

Gaussian, the effect of the diffraction cone may be repre-

sented by an Edgeworth series (Prince, 2004). First, make the

linear transformation x = (2� + h�i)/�b, remembering that h�i is

negative. Then the function

�ðxÞ ¼
1

ð2�Þ1=2
exp �

x2

2

� �
ð5Þ

is a normalized Gaussian with mean zero and variance one. A

function that has the same first four moments as the modified

peak shape function is

PðxÞ ¼ �ðxÞ 1þ
3�

6�3
b

H3ðxÞ þ
4�

24�4
b

H4ðxÞ

� �
; ð6Þ

where

3� ¼ h�3
i � 3h�2

ih�i þ 2h�i3 ð7aÞ

and

4� ¼ h�4i � 4h�3ih�i � 3h�2i
2
þ 12h�2ih�i2 � 6h�i4 ð7bÞ

are the third and fourth cumulants of the modifying function,

respectively.

H3ðxÞ ¼ x3
� 3x ð8aÞ

and

H4ðxÞ ¼ x4
� 6x2

þ 3 ð8bÞ

are the third- and fourth-degree Hermite polynomials,

respectively. Because of the orthogonality properties of the
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Hermite polynomials, this function is also normalized. It is not,

however, guaranteed to be everywhere positive, but any

negative regions will be well down in the high-angle tail, and

small compared with the statistical fluctuations in the back-

ground.

The expressions for hz2ni given in equations (4a) to (4d) are

symmetric with respect to interchanges of A and B, and,

because A and B always occur as even powers, they are also

symmetric with respect to interchanges of H and S. Because H

is a constant for a particular diffractometer configuration, we

choose to treat the effective sample height as the refinable

variable. To do this it is necessary to determine the partial

derivative of the peak shape function [equation (6)] with

respect to S/R. The straightforward but tedious mathematics is

given as supplementary material.1

3. Comparison of Edgeworth model with numerical
convolution

In order to compare the Edgeworth model with the FCJ

numerical convolution procedure we have written a computer

program that calculates peak shapes under various conditions

of diffractometer geometry and resolution according to the

Edgeworth model and the numerical model as implemented in

the subroutine PROFVAL, supplied by L. W. Finger. The

source code for this program is included in the supplementary

material. We also supply as supplementary material source

code for the partial derivatives of the peak shape function with

respect to the refinable parameters.1

Fig. 1 shows the calculated peak shape curves for the

Edgeworth model and for the FCJ method, compared with an

unmodified Gaussian curve with a FWHM of 0.25�, where

S/R = H/R = 0.03, and 2� = 10.0�. These conditions are typical

of those found at the powder diffractometer BT-1 at the NIST

Center for Neutron Research. The curves are virtually iden-

tical. Because the peaks in a typical synchrotron powder

diffraction pattern are much sharper, the peak shape will be

dominated by the shape of the modifying function, which is

not at all like a Gaussian. To get some idea of the limits of

applicability of the Edgeworth model, Fig. 2 shows the

comparable curves for the same conditions as in Fig. 1, except

that the FWHM of the unmodified Gaussian is 0.10�. It is

evident that at this level of resolution the Edgeworth model is

inadequate.

To quantify this comparison, we define a figure of merit by

M ¼
X
ðIE � IFÞ

2=
X

I2
F

h i1=2

; ð9Þ

where IE and IF are the values of the peak shape function as

calculated from the Edgeworth model and the FCJ procedure,

respectively, and the sum is taken over the region in which

either function is significantly different from zero. Consider

the case (the worst case) where H and S are equal. Then A = 0,

B = 2H, and equation (3b) reduces to

hz2ni ¼
ð2HÞ

2n

ðnþ 1Þð2nþ 1Þ
: ð10Þ

Then the moments of the distorting function become

h�ni ¼

"
�

2H2 cot 2�

ðnþ 1Þð2nþ 1ÞR2

#n

: ð11Þ

The third and fourth cumulant coefficients in the Edgeworth

series expansion are therefore proportional to cot3 2� and

cot4 2�, respectively, and decrease rapidly with increasing

values of 2�. The upper curve in Fig. 3 shows M as a function of

2� for H/R = S/R = 0.03, and FWHM = 0.10�. For values of M

less than about 0.05, the curves are virtually indistinguishable.

If H is reduced while holding S fixed, thus making the

detector slit height smaller than the sample height, the higher

cumulant coefficients are also reduced rapidly. Note that this
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Figure 1
Curves of peak shapes according to the Edgeworth model and the
numerical convolution model, with S/R = H/R = 0.03, 2� = 10.0�, and the
full width at half-maximum (FWHM) of the undistorted peak equal to
0.25�.

Figure 2
Curves of the Edgeworth model and the numerical convolution model
with S/R = H/R = 0.03, 2� = 10.0�, and FWHM of the unmodified Gaussian
= 0.10�.

1 Supplementary data are available from the IUCr electronic archives
(Reference: HX5030). Services for accessing these data are described at the
back of the journal.



causes a reduction in detector sensitivity, but this reduction is

linear, while the Lorentz factor is proportional to 1/sin(2�)

and increases rapidly at low angles, compensating for the

reduced detector sensitivity. The middle and lower curves in

Fig. 3 show M for H/R = 0.0225 and H/R = 0.015, respectively.

It is obviously advantageous to collect data using different

axial divergences in different angle ranges. The multidetector

neutron powder diffractometer at the NIST Center for

Neutron Research incorporates smaller slit heights in the

lowest angle detectors to take advantage of this effect.

4. Conclusions

This work has demonstrated that the Edgeworth model can be

parameterized in the same fashion as the FCJ model. The two

models agree very well except when low-angle peaks are very

narrow. Cases where the Edgeworth model fails can be

detected easily by comparison of the standard deviation of the

instrumental peak, �i, with that of the modifying function, �m.

However, where the models are in agreement, the Edgeworth

approach is computationally much simpler. We plan to

implement the Edgeworth model within the GSAS suite of

software (Larson & Von Dreele, 2000).
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Figure 3
Values of the figure of merit, M (see text), as a function of 2� for a
Gaussian peak with FWHM = 0.10�, and several values of H/R. For M less
than 0.05, the curves of the Edgeworth model and the FCJ model are
virtually indistinguishable.
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